Publications

From Voimuri Wiki
Publications
Jump to: navigation, search
(Publications reporting on research supported by this MURI)
 
(23 intermediate revisions by 5 users not shown)
Line 4: Line 4:
 
== Publications reporting on research supported by this MURI==
 
== Publications reporting on research supported by this MURI==
 
[[publications]]: links to publications resulting from this program.
 
[[publications]]: links to publications resulting from this program.
 +
 +
'''''2017'''''
 +
 +
*Y. Altmann, S. McLaughlin, A. O. Hero, "Robust linear spectral unmixing using outlier detection," IEEE Trans on Computational Imaging, to appear 2017. [https://arxiv.org/pdf/1501.03731v2.pdf .pdf].
 +
 +
* K. Greenewald, E. Zelnio, A.O. Hero III, "Kronecker PCA Based Robust SAR STAP," to appear in IEEE Trans on Aerospace and Electronic Systems (AES), 2017. [https://arxiv.org/pdf/1501.07481.pdf .pdf].
 +
 +
* T.-P. Xie, N. Nasrabadi, and A.O. Hero, “Learning to classify with possible sensor failures," to appear in IEEE Transactions on Signal Processing, 2017. [https://arxiv.org/pdf/1507.04540v3.pdf .pdf].
 +
 +
* Y. Yilmaz and Alfred Hero, "Multimodal Event Detection in Twitter Hashtag Networks," to appear in Journ. of Signal Processing Systems, 2017. [https://arxiv.org/pdf/1601.00306.pdf .pdf].
 +
 +
 +
'''''2016'''''
 +
 +
* A. El Alaoui, X. Cheng, A. Ramdas, M. Wainwright, and M. I. Jordan, "Asymptotic behavior of $\ell_p$-based Laplacian regularization in semi-supervised learning",  Proceedings of the Conference on Computational Learning Theory (COLT), New York, NY, June 2016. [https://arxiv.org/pdf/1603.00564v1.pdf .pdf].
 +
 +
* Y. Altmann, S. McLaughlin, A.O. Hero, "Robust linear spectral unmixing using outlier detection," IEEE Trans on Computational Imaging, 2016. [https://arxiv.org/pdf/1501.03731.pdf .pdf].
 +
 +
* V. Berisha, A. Wisler, A.O. Hero, and A. Spanias, "Empirically Estimable Classification Bounds Based on a Nonparametric Divergence Measure" IEEE Transactions on Signal Processing, vol. 64, no. 3, pp.580-591, Feb. 2016.  [https://arxiv.org/pdf/1412.6534.pdf .pdf]
 +
 +
* H.-W. Chung, L. Zheng, B. Sadler, A.O. Hero, "Unequal Error Protection Coding Approaches to the Noisy 20 Questions Problem," IEEE Intl Conf. on Information Theory (ISIT), July 2016, Barcelona Spain. [http://web.eecs.umich.edu/~hero/Preprints/UEP_ISIT2016_final.pdf .pdf].
 +
 +
* X. Gong, J. Zhang, D. Cochran, and K. Xing, "Optimal placement for barrier coverage in bistatic radar sensor networks,'' IEEE/ACM Transactions on Networking}, vol. 24, no. 1, pp. 259--271, 2016. [http://cochran.faculty.asu.edu/papers/2014_Gong_Barrier_IEEEToN.pdf .pdf]
 +
 +
* K. Greenewald, E. Zelnio, A.O. Hero III, "Kronecker PCA Based Robust SAR STAP," IEEE Trans on Aerospace and Electronic Systems (AES), 2016. [https://arxiv.org/pdf/1501.07481v3.pdf .pdf].
 +
 +
*K. Greenewald, E. Zelnio and A.O. Hero, "Kronecker STAP and SAR GMTI," Proceedings of SPIE Symposium on Defense, Sensing and Security April 2016. [https://arxiv.org/pdf/1604.03622v1.pdf .pdf].
 +
 +
*N. Halay, K. Todros and A.O. Hero, "Measure transformed quasi-likelihood ratio test for Bayesian binary hypothesis testing," IEEE Workshop on Statistical Signal Processing (SSP), Pamplona Spain, June 2016. [http://web.eecs.umich.edu/~hero/Preprints/SSP16_Todros_PAPER.pdf .pdf].
 +
 +
* A.O. Hero and B. Rajaratnam, "Foundational principles for large-scale inference: illustrations through correlation mining," Proceedings of the IEEE, vol. 104, no. 1, pp. 93-110, Jan 2016.  [https://arxiv.org/abs/1505.02475.pdf .pdf].
 +
 +
* J. Lee, M. Simchowitz, B. Recht, and M. I. Jordan, "Gradient descent only converges to minimizers,"  Proceedings of the Conference on Computational Learning Theory (COLT), New York, NY, June 2016. [https://arxiv.org/abs/1602.04915v2.pdf .pdf].
 +
 +
*  L. Li, V. Malave, A. Song, and A. J. Yu, "Extracting human face similarity judgments: Pairs or triplets?," Proceedings of the Thirty-Eighth Annual Conference of the Cognitive Science Society, 2016. [https://mindmodeling.org/cogsci2016/papers/0253/paper0253.pdf .pdf].
 +
 +
* Q. Liu, J.D. Lee, M.I. Jordan, "A kernelized Stein discrepancy for goodness-of-fit tests," In Proceedings of the International Conference on Machine Learning (ICML) Sep 2016. [http://www.jmlr.org/proceedings/papers/v48/liub16.pdf .pdf].
 +
 +
* B. Moore and R. R. Nadakuditi, “Robust pca: Low rank matrix estimation with hard or soft thresholding based outlier rejection,'' in Proceedings of IEEE GlobalSIP conference, 2016. [http://www.ieeeglobalsip.org/Papers/ViewPapers.asp?PaperNum=1526 .html].
 +
 +
* B. Mu, S.-Y. Liu, L. Paull, J. Leonard, and J. P. How, “Slam with objects using a nonparametric pose graph,'' in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, Oct 2016. [http://ieeexplore.ieee.org/document/7759677/ .html].
 +
 +
* B. Mu, L. Paull, A. Akbar Agha-mohammadi, J. How, and J. Leonard, “Two-stage focused inference for resource-constrained minimal collision navigation,'' IEEE Transactions on Robotics, 2016 (conditionally accepted).  [http://www.roboticsproceedings.org/rss11/p04.pdf .pdf].
 +
 +
* G. E. Newstadt, B. Mu, D. Wei, J. P. How, A. O. Hero III, "Importance-weighted adaptive search for multi-class targets," IEEE Trans on Signal Processing, vol. 63, no. 23, 6299-6314, Dec. 2015.  [https://arxiv.org/pdf/1603.00564v1.pdf .pdf].
 +
 +
* S. Ravishankar, B. E. Moore, R. R. Nadakuditi, and J. A. Fessler, “Lassi: A low-rank and adaptive sparse signal model for highly accelerated dynamic imaging,'' in IEEE Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5,  2016. [https://arxiv.org/pdf/1611.04069v2.pdf  .pdf].
 +
 +
* S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler, “Efficient learning of dictionaries with low rank atoms,'' in  Proceedings of IEEE GlobalSIP conference, 2016. [http://www.ieeeglobalsip.org/Papers/ViewPapers.asp?PaperNum=1471  .pdf].
 +
 +
* S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler, “Sum of outer products dictionary learning for inverse problems,'' in Proceedings of IEEE GlobalSIP conference, 2016. [https://arxiv.org/pdf/1511.08842v1.pdf  .pdf].
 +
 +
* S. Soatto, “Visual inertial semantic scene representation,'' UCLA TR CSD160005, May 20, 2016. [https://arxiv.org/pdf/1606.03968v1.pdf .pdf].
 +
 +
* S. Soatto and A. Chiuso, “Visual representations: Defining properties and deep approximations,'' Proc. of the Intl. Conf. on Learning Representations (ICLR); ArXiv: 1411.7676, May 2016. [https://arxiv.org/pdf/1411.7676v9.pdf .pdf].
 +
 +
* N. Sugavanam, S. Baskar, and E. Ertin, “Recovery guarantees for high resolution radar sensing with compressive illumination,”€ Fourth International Conference on Compressive Sensing applied to Radar (COSERA2016), Sep 2016. [https://arxiv.org/pdf/1508.07969.pdf .pdf].
 +
 +
* N. Sugavanam and E. Ertin, “Recovery guarantees for high resolution radar sensing with compressive illumination,” chapter in Compressive Sensing of Earth Observations,edited by C. Chen,  CRC Press, 2016. [https://arxiv.org/pdf/1508.07969.pdf .pdf].
 +
 +
*  D. Teng and E. Ertin, “Wald-kernel: A method for learning sequential detectors,” in Proceedings of IEEE Statistical Signal Processing (SSP2016), June 2016. [http://ieeexplore.ieee.org/document/7551760/  .pdf].
 +
 +
* D. Wang, J. Fisher III, and Q. Liu, “Efficient observation selection in probabilistic graphical models using bayesian lower bounds,'' in Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, pp.  755--764. AUAI Press, 2016. [http://auai.org/uai2016/proceedings/papers/83.pdf .html].
 +
 +
* G. T. Whipps, E. Ertin, and R. L. . Moses, “Constrained fisher scoring for a mixture of factor analyzers,” Army Research Labaratory, Tech. Rep. ARL-TR-7836, 2016.
 +
 +
* T.-P. Xie, N. Nasrabadi, A.O. Hero, "Learning to classify with possible sensor failures,"  IEEE Transactions on Signal Processing, 2016.  [http://arxiv.org/pdf/1507.04540 .pdf].
 +
 +
* Y. Yilmaz and A.O. Hero, "Multimodal Event Detection in Twitter Hashtag Networks,"  Journ. of Signal Processing Systems, 2016.  [http://arxiv.org/pdf/1601.00306 .pdf]. 
 +
  
 
'''''2015'''''
 
'''''2015'''''
Line 9: Line 79:
 
* T. Abdelrahman and  E. Ertin, "Mixture of factor analyzers models of appearance manifolds for resolved SAR targets,’’ in  Proceedings of  SPIE 9475, Algorithms for Synthetic Aperture Radar Imagery XXII, May 2015. [http://ece.osu.edu/~ertine/Ertin2015d.pdf  .pdf]
 
* T. Abdelrahman and  E. Ertin, "Mixture of factor analyzers models of appearance manifolds for resolved SAR targets,’’ in  Proceedings of  SPIE 9475, Algorithms for Synthetic Aperture Radar Imagery XXII, May 2015. [http://ece.osu.edu/~ertine/Ertin2015d.pdf  .pdf]
  
* S. Ahmad and A. J. Yu, "A rational model for individual differences in preference choice," Proceedings of the Thirty-Seventh Annual Meeting of the Cognitive Science Society. [http://www.cogsci.ucsd.edu/~ajyu/Papers/cogsci15_sheeraz.pdf]
+
* S. Ahmad and A. J. Yu, "A rational model for individual differences in preference choice," Proceedings of the Thirty-Seventh Annual Meeting of the Cognitive Science Society [http://www-personal.umich.edu/~hyechung/paper_o/cogsci15.pdf .pdf]
  
 
* Y. Altmann, S. McLaughlin, A.O. Hero, "Robust linear spectral unmixing using outlier detection," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1501.03731v1 .pdf]
 
* Y. Altmann, S. McLaughlin, A.O. Hero, "Robust linear spectral unmixing using outlier detection," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1501.03731v1 .pdf]
Line 22: Line 92:
  
 
* P-Y Chen and A. O. Hero, "Phase transitions in spectral community detection of large noisy networks," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1504.02412v2 .pdf]
 
* P-Y Chen and A. O. Hero, "Phase transitions in spectral community detection of large noisy networks," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1504.02412v2 .pdf]
 +
 +
* H.-W. Chung, B. M. Sadler, and A. O. Hero, "Bounds on variance for symmetric unimodal distributions," Allerton Conference, Oct. 2015. [https://arxiv.org/pdf/1510.08341.pdf  .pdf]
  
 
* J. Dong, N. Karianakis, D. Davis, J. Hernandez, J. Balzer and S. Soatto, "Multi-view feature engineering and learning", ''Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition'', 2015. [http://vision.ucla.edu/papers/dongKDHBS15.pdf .pdf]
 
* J. Dong, N. Karianakis, D. Davis, J. Hernandez, J. Balzer and S. Soatto, "Multi-view feature engineering and learning", ''Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition'', 2015. [http://vision.ucla.edu/papers/dongKDHBS15.pdf .pdf]
Line 30: Line 102:
  
 
* B. Farrell and R. Nadakuditi, " Local spectrum of truncations of Kronecker products of Haar distributed unitary matrices", Random Matrices: Theory and Applications, vol. 4, no. 1, 1550001, 2015. [http://arxiv.org/pdf/1311.6783v1.pdf]
 
* B. Farrell and R. Nadakuditi, " Local spectrum of truncations of Kronecker products of Haar distributed unitary matrices", Random Matrices: Theory and Applications, vol. 4, no. 1, 1550001, 2015. [http://arxiv.org/pdf/1311.6783v1.pdf]
 +
 +
* O. Freifeld, K. Batmanghelich, J. W. Fisher, et al., “Highly-expressive spaces of well-behaved transformations: Keeping it simple,'' in IEEE International Conference on Computer Vision (ICCV), pp.  2911--2919. 2015. [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Freifeld_Highly-Expressive_Spaces_of_ICCV_2015_paper.pdf  .pdf].
  
 
* G. Georgiadis, A. Chiuso and S. Soatto, "Texture representations for image and video texture synthesis", ''Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition'', 2015. [http://vision.ucla.edu/papers/georgiadisCS15.pdf .pdf]
 
* G. Georgiadis, A. Chiuso and S. Soatto, "Texture representations for image and video texture synthesis", ''Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition'', 2015. [http://vision.ucla.edu/papers/georgiadisCS15.pdf .pdf]
Line 36: Line 110:
  
 
* S. Gogineni, P. Setlur, R. Nadakuditi and M. Rangaswamy, "Random matrix theory inspired passive bistatic radar detection of low-rank signals," Proceedings of IEEE Radar Conference, pp. 1656-1659, 2015. [http://dx.doi.org/10.1109/RADAR.2015.7131264] [http://cochran.faculty.asu.edu/papers/Gogineni_Radar.pdf .pdf]
 
* S. Gogineni, P. Setlur, R. Nadakuditi and M. Rangaswamy, "Random matrix theory inspired passive bistatic radar detection of low-rank signals," Proceedings of IEEE Radar Conference, pp. 1656-1659, 2015. [http://dx.doi.org/10.1109/RADAR.2015.7131264] [http://cochran.faculty.asu.edu/papers/Gogineni_Radar.pdf .pdf]
 +
 +
* M. Graham, J. How, and D. Gustafson, “Robust incremental {SLAM} with consistency-checking,'' in Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, pp.  117--124, Sept 2015. [http://ieeexplore.ieee.org/document/7353363/?reload=true&arnumber=7353363  .html].
  
 
* K. Greenewald, E. Zelnio, A.O. Hero III, "Kronecker PCA Based Robust SAR STAP," submitted Jan 2015. [http://arxiv.org/pdf/1501.07481 .pdf]  
 
* K. Greenewald, E. Zelnio, A.O. Hero III, "Kronecker PCA Based Robust SAR STAP," submitted Jan 2015. [http://arxiv.org/pdf/1501.07481 .pdf]  
Line 44: Line 120:
  
 
* S. D. Howard, D. Cochran, and W. Moran, "Gauge-invariant registration in networks," ''Proceedings of the International Conference on Information Fusion'', July 2015. [http://cochran.faculty.asu.edu/papers/2015_Howard_Gauge_Fusion.pdf .pdf]
 
* S. D. Howard, D. Cochran, and W. Moran, "Gauge-invariant registration in networks," ''Proceedings of the International Conference on Information Fusion'', July 2015. [http://cochran.faculty.asu.edu/papers/2015_Howard_Gauge_Fusion.pdf .pdf]
 +
 +
* K.J. Hsiao, J. Calder, A.O. Hero, "Multi-criteria Anomaly Detection using Pareto Depth Analysis," IEEE Journ on Neural Network Learning Systems, no. 6, vol. 27, pp. 1307-1321, Aug. 2015. [http://arxiv.org/pdf/1508.04887.pdf .pdf].
  
 
* K.J. Hsiao, J. Calder and A.O. Hero, "Pareto-depth for Multiple-query Image Retrieval," IEEE Trans on Image Processing, vol. 24, no. 2, pp. 583-594, 2015. [http://web.eecs.umich.edu/~hero/Preprints/hsiao-tip2015_final.pdf .pdf]  
 
* K.J. Hsiao, J. Calder and A.O. Hero, "Pareto-depth for Multiple-query Image Retrieval," IEEE Trans on Image Processing, vol. 24, no. 2, pp. 583-594, 2015. [http://web.eecs.umich.edu/~hero/Preprints/hsiao-tip2015_final.pdf .pdf]  
  
* Goran Marjanovic, Magnus Ulfarsson, Alfred O. Hero, "MIST: L0 sparse linear regression with momentum," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1409.7193v2 .pdf]
+
* Q. Liu, J. W. Fisher III, and A. T. Ihler, “Probabilistic variational bounds for graphical models,'' in Advances in Neural Information Processing Systems, pp.  1432--1440, 2015. [http://www.cs.dartmouth.edu/~qliu/PDF/NIPS15TRW.pdf .pdf].
 +
 
 +
* Q. Liu, A. Ihler, J. W. Fisher III, "Boosting Crowdsourcing With Expert Labels: Local vs. Global Effects", International Conference on Information Fusion (Fusion), 2015. [http://www.cs.dartmouth.edu/~qliu/PDF/FusionCrowd15.pdf]
 +
 
 +
* G. Marjanovic, M. Ulfarsson, A.O. Hero, "MIST: L0 sparse linear regression with momentum," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1409.7193v2 .pdf]
  
 
* B. Mu, G. Newstadt, D. Wei, A.O. Hero, J.P. How, "Adaptive Search for Multi-class Targets with Heterogeneous Importance," Fusion 2015. [http://arxiv.org/pdf/1409.7808.pdf .pdf]
 
* B. Mu, G. Newstadt, D. Wei, A.O. Hero, J.P. How, "Adaptive Search for Multi-class Targets with Heterogeneous Importance," Fusion 2015. [http://arxiv.org/pdf/1409.7808.pdf .pdf]
  
* H. Nayar and R. Nadakuditi, "OptFuse:Low-rank factor estimation by optimal data-driven linear fusion of multiple signal-plus-noise matrices," Proceedings of the 2015 Fusion Conference, To Appear.
+
* H. Nayar and R. Nadakuditi, "OptFuse:Low-rank factor estimation by optimal data-driven linear fusion of multiple signal-plus-noise matrices," Proceedings of the 2015 Fusion Conference, [https://www.dropbox.com/s/9rdycyuf1x6vayw/paper_v1.pdf?dl=0]
  
 
* H. Nayar and R. Nadakuditi, "Theoretical performance analysis of Tucker Higher Order SVD in extracting structure from multiple signal-plus-noise matrices," Proceedings of the IEEE Asilomar Conference on Signals & Systems, pp. 755-759, 2015. [http://dx.doi.org/10.1109/ACSSC.2014.7094550] [http://cochran.faculty.asu.edu/papers/Nayar_Asilomar.pdf .pdf]
 
* H. Nayar and R. Nadakuditi, "Theoretical performance analysis of Tucker Higher Order SVD in extracting structure from multiple signal-plus-noise matrices," Proceedings of the IEEE Asilomar Conference on Signals & Systems, pp. 755-759, 2015. [http://dx.doi.org/10.1109/ACSSC.2014.7094550] [http://cochran.faculty.asu.edu/papers/Nayar_Asilomar.pdf .pdf]
 +
 +
*  Gregory E. Newstadt, Beipeng Mu, Dennis Wei, Jonathan P. How, Alfred O. Hero III, "Importance-weighted adaptive search for multi-class targets," IEEE Trans on Signal Processing, vol. 63, no. 23, 6299-6314, Dec. 2015. [https://arxiv.org/abs/1409.7808.pdf .pdf].
  
 
* G. Newstadt, D. Wei, A.O. Hero, "Adaptive Search and Tracking of Sparse Dynamic Targets under Resource Constraints," to appear in IEEE Trans. Signal Processing 2015. [http://arxiv.org/pdf/1404.2201v1 .pdf]
 
* G. Newstadt, D. Wei, A.O. Hero, "Adaptive Search and Tracking of Sparse Dynamic Targets under Resource Constraints," to appear in IEEE Trans. Signal Processing 2015. [http://arxiv.org/pdf/1404.2201v1 .pdf]
Line 60: Line 144:
  
 
* S. Olver, R. Nadakuditi and T. Trogdon, "Sampling unitary ensembles," Random Matrices: Theory and Applications, vol. 4, no. 1, 1550002, 2015. [http://www.worldscientific.com/doi/pdf/10.1142/S2010326315500021]
 
* S. Olver, R. Nadakuditi and T. Trogdon, "Sampling unitary ensembles," Random Matrices: Theory and Applications, vol. 4, no. 1, 1550002, 2015. [http://www.worldscientific.com/doi/pdf/10.1142/S2010326315500021]
 +
 +
* G. Papachristoudis, J. W. Fisher III, "On the Complexity of Information Planning in Gaussian Models", IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2015. [http://people.csail.mit.edu/geopap/pubs/geopapaICASSP2015.pdf]
 +
 +
* G. Papachristoudis, J. W. Fisher III, "Efficient Information Planning in Gaussian MRFs", International Conference on Information Fusion (Fusion), 2015. [http://people.csail.mit.edu/geopapa/pubs/geopapaFUSION2015.pdf]
 +
 +
* G. Papachristoudis, J. W. Fisher III, "Adaptive Belief Propagation", In International Conference on Machine Learning (ICML), 2015. [http://jmlr.org/proceedings/papers/v37/papachristoudis15.pdf]
  
 
* S. Soatto and A. Chiuso, "Visual Scene Representations: sufficiency, minimality, invariance and deep approximation", International Conference on Learning Representations, 2015. [http://arxiv.org/abs/1411.7676 .pdf]
 
* S. Soatto and A. Chiuso, "Visual Scene Representations: sufficiency, minimality, invariance and deep approximation", International Conference on Learning Representations, 2015. [http://arxiv.org/abs/1411.7676 .pdf]
  
* {Straub, Julian and Chang, Jason and Freifeld, Oren and Fisher III, John W., "A Dirichlet Process Mixture Model for Spherical Data", International Conference on Artificial Intelligence and Statistics, 2015. [http://www.jstraub.de/download/straub2015dptgmm.pdf]
+
* J. Straub, J. Chang, O. Freifeld, J. W. Fisher III, "A Dirichlet Process Mixture Model for Spherical Data", International Conference on Artificial Intelligence and Statistics (AISTATS), 2015. [http://www.jstraub.de/download/straub2015dptgmm.pdf]
 +
 
 +
* J. Straub, T. Campbell, J. P. How, J. W. Fisher III, "Small-Variance Nonparametric Clustering on the Hypersphere", In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. [http://www.jstraub.de/download/straub2015ddpvmf.pdf]
  
 
* R. T. Suryaprakash and R. Nadakuditi, "Consistency and MSE Performance of MUSIC-based DOA of a Single Source in White Noise with Randomly Missing Data," IEEE Transactions on Signal Processing, vol. 63, no. 18, pp. 4756-4770, September 2015. [http://dx.doi.org/10.1109/TSP.2015.2440187] [http://cochran.faculty.asu.edu/papers/Tejas_TransSP.pdf .pdf]
 
* R. T. Suryaprakash and R. Nadakuditi, "Consistency and MSE Performance of MUSIC-based DOA of a Single Source in White Noise with Randomly Missing Data," IEEE Transactions on Signal Processing, vol. 63, no. 18, pp. 4756-4770, September 2015. [http://dx.doi.org/10.1109/TSP.2015.2440187] [http://cochran.faculty.asu.edu/papers/Tejas_TransSP.pdf .pdf]
Line 82: Line 174:
  
 
* T. Xie, N. Nasrabadi, A.O. Hero, "Multi-sensor classification via consensus-based multi-view maximum entropy discrimination," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1507.01269.pdf .pdf]
 
* T. Xie, N. Nasrabadi, A.O. Hero, "Multi-sensor classification via consensus-based multi-view maximum entropy discrimination," IEEE Intl Conf on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, April 2015. [http://arxiv.org/pdf/1507.01269.pdf .pdf]
 +
 +
* Y. Yilmaz and A. O. Hero, "Multimodal factor analysis," Proc. of IEEE Workshop on Machine Learning and Signal Processing, Boston, 2015. [http://arxiv.org/pdf/1508.00408.pdf .pdf].
  
 
* Y. Zhang, M. J. Wainwright, and M. I. Jordan, "Distributed estimation of generalized matrix rank: Efficient algorithms and lower bounds," ''International Conference on Machine Learning'', to appear. [http://arxiv.org/pdf/1502.01403.pdf .pdf]
 
* Y. Zhang, M. J. Wainwright, and M. I. Jordan, "Distributed estimation of generalized matrix rank: Efficient algorithms and lower bounds," ''International Conference on Machine Learning'', to appear. [http://arxiv.org/pdf/1502.01403.pdf .pdf]

Latest revision as of 21:55, January 14, 2017

Publications since 2012


Publications reporting on research supported by this MURI

publications: links to publications resulting from this program.

2017


2016


2015


2014



2013


2012

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox
EECS @ UM
Tools