Publications

From Voimuri Wiki
Publications
Jump to: navigation, search
(Publications reporting on research supported by this MURI)
(Publications reporting on research supported by this MURI)
Line 15: Line 15:
 
[http://www.ece.osu.edu/~ertine/AshErtin2014.pdf .pdf]
 
[http://www.ece.osu.edu/~ertine/AshErtin2014.pdf .pdf]
  
* J. Duchi, M. I. Jordan, and B. McMahan, "Estimation, optimization, and parallelism when data is sparse," (2014).  In L. Bottou, C. Burges, Z. Ghahramani and M. Welling (Eds.), Advances in Neural Information Processing (NIPS) 26, Red Hook, NY: Curran Associates.
+
* J. Duchi, M. I. Jordan, and B. McMahan, "Estimation, optimization, and parallelism when data is sparse," (2014).  In L. Bottou, C. Burges, Z. Ghahramani and M. Welling (Eds.), Advances in Neural Information Processing (NIPS) 26, Red Hook, NY: Curran Associates. [http://www.cs.berkeley.edu/~jordan/papers/duchi-jordan-mcmahan-nips14.pdf]
  
* J. Duchi, M. I. Jordan, and M. Wainwright, "Local privacy and minimax bounds: Sharp rates for probability estimation," (2014).  In L. Bottou, C. Burges, Z. Ghahramani and M. Welling (Eds.), Advances in Neural Information Processing (NIPS) 26, Red Hook, NY: Curran Associates.
+
* J. Duchi, M. I. Jordan, and M. Wainwright, "Local privacy and minimax bounds: Sharp rates for probability estimation," (2014).  In L. Bottou, C. Burges, Z. Ghahramani and M. Welling (Eds.), Advances in Neural Information Processing (NIPS) 26, Red Hook, NY: Curran Associates. [http://www.cs.berkeley.edu/~jordan/papers/duchi-jordan-wainwright-nips14.pdf]
  
 
* F. Lindsten, M. I. Jordan, and T. Schoen,  "Particle Gibbs with ancestral sampling," Journal of Machine Learning Research, 15, 2145-2184. [http://jmlr.org/papers/volume15/lindsten14a/lindsten14a.pdf].
 
* F. Lindsten, M. I. Jordan, and T. Schoen,  "Particle Gibbs with ancestral sampling," Journal of Machine Learning Research, 15, 2145-2184. [http://jmlr.org/papers/volume15/lindsten14a/lindsten14a.pdf].
  
* J. Duchi, M. I. Jordan, M. Wainwright and A. Wibisono, "Finite sample convergence rates of zero-order stochastic optimization methods," (2013).  In P. Bartlett, F. Pereira, L. Bottou, and C. Burges (Eds.), Advances in Neural Information Processing (NIPS) 25, Red Hook, NY: Curran Associates.
+
* J. Duchi, M. I. Jordan, M. Wainwright and A. Wibisono, "Finite sample convergence rates of zero-order stochastic optimization methods," (2013).  In P. Bartlett, F. Pereira, L. Bottou, and C. Burges (Eds.), Advances in Neural Information Processing (NIPS) 25, Red Hook, NY: Curran Associates. [http://www.cs.berkeley.edu/~jordan/papers/duchi-jordan-wainwright-wibisono-nips13.pdf]
  
 
* V. Karasev, A. Ravichandran, S. Soatto, "Active Frame, Location, and Detector Selection for Automated and Manual Video Annotation," in Proc. of the IEEE Conf. on Comp. Vis. and Patt. Recog., 2014
 
* V. Karasev, A. Ravichandran, S. Soatto, "Active Frame, Location, and Detector Selection for Automated and Manual Video Annotation," in Proc. of the IEEE Conf. on Comp. Vis. and Patt. Recog., 2014
  
* L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell and J. A. Tropp,  "Matrix concentration inequalities via the method of exchangeable pairs," Annals of Probability, 42, 906-945. [http://arxiv.org/abs/1201.6002 .html].
+
* L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell and J. A. Tropp,  "Matrix concentration inequalities via the method of exchangeable pairs," Annals of Probability, 42, 906-945. [http://arxiv.org/abs/1201.6002].
  
 
* G. Marjanovic and A.O. Hero, "On lq Estimation of Sparse Inverse Covariance," Proc. of IEEE Conf. on Acoustics, Speech and Signal Processing (ICASSP) 2014.
 
* G. Marjanovic and A.O. Hero, "On lq Estimation of Sparse Inverse Covariance," Proc. of IEEE Conf. on Acoustics, Speech and Signal Processing (ICASSP) 2014.

Revision as of 19:02, July 29, 2014

Publications 2012


Publications reporting on research supported by this MURI

publications: links to publications resulting from this program.


2014

.pdf

2013

2012

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox
EECS @ UM
Tools