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INTRODUCTION

Aim of the Project
1. Quantify the value of information for inference
tasks such as state estimation
2. Find the right information surrogates for estima-
tion errors

Problem Formulation
Noisy 20 questions game to estimate a target location
X ∈ R in the setting of stochastic search
1. Single player setting:

Sensor Fusion center
Is the target X ∈ Ai?

Bern(�)
YiZi

target X ∼ p(x)

Model: A fusion center asks queries regarding the
target location X to a sensor and receives binary an-
swers from it, which pass through BSC(ε)
Goal: To minimize E[|X − X̂(Y n1 )|2]
Aspects:

• The value of adaptivity in designing Ai’s to re-
duce the mean squared error (MSE)

• Information surrogate: conditional entropy
h(X|Y n1 ) = EY n1

[
−
∫
p(x|yn1 ) log p(x|yn1 )dx

]
2. Multiple player setting: multiple players with dif-
ferent reliabilities
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Image source: Tsiligkaridis [1]
Aspects:

• Joint query design vs. sequential query design

• Information surrogate: conditional entropy

INFORMATION SURROGATE

Conditional Entropy

• Why conditional entropy?

min
{A1,...,An}

h(X|Y n1 )⇔ max
{A1,...,An}

I(X;Y n1 )

• Necessary condition: estimation counterpart to
the Fano’s inequality

E[|X − X̂(Y n1 )|2] ≥ 1

2πe
e2·h(X|Y

n
1 )

⇒ A small entropy is necessary to achieve a
small mean squared error

Two Questions
1. Under the entropy proxy, what is the value of
adaptivity?
2. Is minimizing conditional entropy sufficient to re-
duce the mean squared error (MSE)?

MAIN CONTRIBUTIONS

1. Under entropy proxy, both adaptive and non-
adaptive polices can achieve the optimal performance
2. For unimodal distributions with exponential tails,
MSE decreases exponentially with the conditional
entropy

SINGLE PLAYER PROBLEM

A Lower Bound on Conditional Entropy

h(X|Y n1 ) ≥ h(X)− nC where C = 1−HB(ε)

Equality can be achieved by designing Ai’s such
that {Pr(X ∈ Ai),Pr(X /∈ Ai)} to be the optimum
input distribution to the BSC(ε), which is {1/2, 1/2}.

Adaptive vs. Non-Adaptive Policy
• Optimum adaptive policy: bisection rule

• Optimum non-adaptive policy: dyadic rule [2]

p(x) ∼ Unif[0, 1]
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⇒ both bisection and dyadic policies achieve the op-
timum input distribution∫

Ai

p(x|yi−11 )dx = 1/2, ∀yi−11 ∈ {0, 1}i−1,

and thus the maximum reduction of entropy.

MULTIPLE PLAYER PROBLEM

Sequential vs. Joint Query Design
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• Sequential query design has access to a more
refined filtration

• Optimum sequential policy: bisection rule

• Optimum joint policy: generalization of dyadic
rule

Theorem 1 ([1]). Both the optimum sequential pol-
icy and the optimum joint policy achieve the maxi-
mum entropy reduction of

h(X|{Y (1)
i , · · · , Y (M)

i }ni=1) ≥ h(X)− n · C̄ (1)

where C̄ =
∑M
m=1(1−HB(εm)) after n-rounds.

MEAN SQUARED ERROR BOUNDS

Converse Bound
From the estimation counterpart to the Fano’s in-
equality,

E[|X − X̂n|2] ≥ e2h(p(X))

2πe
exp

(
−2nC̄

)
(2)

Achievability Bound of Adaptive Policy
Theorem 2 ([1]). Using the (adaptive) bisection rule
for M -players,

E[|X − X̂n|2] ≤ (2−2/3 + 21/3) exp

(
−2

3
nC ′

)
(3)

where C ′ =
∑M
m=1

(
1/2−

√
εm(1− εm)

)
.

Performance of Non-Adaptive Dyadic Policy
What this policy actually does is sending the binary
expansion of the target location X = 0.b1b2 . . . bn

• This policy cannot correct errors in bits ⇒
large estimation error

• Each bit is treated with equal importance

⇒ Not all the policies achieving the minh(X|Y n1 )
give a good estimation error
What Does Entropy Fail to Capture?
Entropy is invariant to permutations ⇒ It fails to
capture the concentration of measure
Question: Can we find a class of distributions such
that variance is a monotonic function of entropy?

UNIMODAL DISTRIBUTION

Gaussian Distribution
For Gaussian distributions,

E[|X − X̂(Y n1 )|2] = Var(X|Y n1 ) =
1

2
e2·h(X|Y

n
1 ).

⇒ A lower entropy directly implies a lower MSE.
Can it be true for more general unimodal distribu-
tions?

Unimodal Distribution
Theorem 3. For unimodal distributions with ex-
ponentially decreasing tails, i.e., p(X) = e−cx

|θ|
/Z

where θ > 1,

e2·h(X)

2πe
≤ Var(X) ≤ α

(I(X))β
≤ α · e2β·h(X)

2πe
(4)

for some constant α, β > 0 and Fisher information
I(X) = E[

(
∂
∂x log p(x)

)2
].

Conditional Entropy as a Proxy for MSE

• A small entropy is necessary but not sufficient
to achieve a small MSE

• Once the posterior distribution satisfies the en-
hanced unimodality condition, a strategy that
minimizes conditional entropy can give an ex-
ponentially decreasing MSE

• Open question: what strategy can effectively
form and maintain a unimodal posterior distri-
bution?
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