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INTRODUCTION

Aim of the Project

1. Quantify the value of information for inference
tasks such as state estimation

2. Find the right information surrogates for estima-
tion errors

Problem Formulation

Noisy 20 questions game to estimate a target location
X € R in the setting of stochastic search

1. Single player setting:

target X ~ p(x)

(IS the target X € A;?

Sensor ) |
N
Zi X Y;
Bern(e)

Fusion center

Model: A fusion center asks queries regarding the
target location X to a sensor and receives binary an-
swers from it, which pass through BSC(¢)

Goal: To minimize E[|X — X (Y{")|?]

Aspects:

e The value of adaptivity in designing A,’s to re-
duce the mean squared error (MSE)

e Information surrogate: conditional entropy

WX |Y") = Eyp [— [ p(zly?)log p(|yy)dz]

2. Multiple player setting: multiple players with dif-
ferent reliabilities

Is the target X € Agl)? Is the target X € Aq(;Q)?

//7/ Fusion
center

BSC(El)

Image source: Tsiligkaridis [1]

Aspects:

e Joint query design vs. sequential query design

e Information surrogate: conditional entropy

INFORMATION SURROGATE
Conditional Entropy

e Why conditional entropy?

min  h(X|Y") & max

I1(X:Y/"
(Ay,... . A} (Ay,.., A} (X577

e Necessary condition: estimation counterpart to
the Fano’s inequality

S[lX — X(O)P) > 5 e MO0
2Te

= A small entropy is necessary to achieve a
small mean squared error

Two Questions

1. Under the entropy proxy, what is the value of

adaptivity?
2. Is minimizing conditional entropy sufficient to re-
duce the mean squared error (MSE)?

MAIN CONTRIBUTIONS

1. Under entropy proxy, both adaptive and non-
adaptive polices can achieve the optimal performance
2. For unimodal distributions with exponential tails,
MSE decreases exponentially with the conditional
entropy

Hye Won Chung*, Brian M. Sadler’ and Alfred O. Hero*

* University of Michigan, Ann Arbor, MI, USA
" US Army Research Laboratory, Adelphi, MD, USA

SINGLE PLAYER PROBLEM

A Lower Bound on Conditional Entropy
h(X|Y{") > h(X) —nC where C =1 — Hp(¢)

Equality can be achieved by designing A;’s such
that {Pr(X € A;),Pr(X ¢ A;)} to be the optimum
input distribution to the BSC(¢), which is {1/2,1/2}.

Adaptive vs. Non-Adaptive Policy
e Optimum adaptive policy: bisection rule

¢ Optimum non-adaptive policy: dyadic rule 2]
1st stage
( . R

Bisection/Dyadic policy
4 p(x) ~ Unif|0, 1]

0 1 )

\_
2nd stage
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Bisection policy | | Dyadic policy
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Ap(ﬂ?’yl = 1)

=

0 1 0 1

= both bisection and dyadic policies achieve the op-
timum input distribution

/ p(elyide = 1/2, Wyt € {0,1},
Aj

and thus the maximum reduction of entropy.

MULTIPLE PLAYER PROBLEM

Sequential vs. Joint Query Design

AW Y, Posterior
—>| Controller 1 4>| Player 1 ’? > update
Bern(e;)
L AP vY,*| Posterior
Controller 2 4>| Player 2 ’? > update
Bern(es)
N ;
AgM) MIPosterior
5 |Controller M 4>| Player M )€§/ g update
Bern(e)

Sequential query design

(1)
——> Player 1 H?YA)

Joint Bern(e1)|Fusion
controller center

(2)
Player 2 —>?L> -
——> Player M —)?—)’L

Pz'(X|YZ-(1), e Yi(M)) Bern(enr)

lﬁi

Joint query design

Image source: Tsiligkaridis [1]

e Sequential query design has access to a more
refined filtration

e Optimum sequential policy: bisection rule

e Optimum joint policy: generalization of dyadic
rule

Theorem 1 (|1|). Both the optimum sequential pol-
icy and the optimum joint policy achieve the maxi-
mum entropy reduction of

XYY, Y Y > (X)) 0O (1)

where C = Z%Zl(l — Hg(€m)) after n-rounds.

Information Surrogates for State Estimation

A

MEAN SQUARED ERROR BOUNDS

Converse Bound
From the estimation counterpart to the Fano’s in-
equality,

e2h(p(X))

|

X - X,|%>

exp (—2nC) (2)

2me

Achievability Bound of Adaptive Policy

Theorem 2 (|1]). Using the (adaptive) bisection rule
for M -players,

. 2
X - X, 2] < (270 + 2 exp (~3nC") 3

where C" = Zf,\le (1/2 — v/em (1 — em)).

Performance of Non-Adaptive Dyadic Policy
What this policy actually does is sending the binary
expansion of the target location X = 0.b105 ... b,

e This policy cannot correct errors in bits =
large estimation error

e Fach bit is treated with equal importance

= Not all the policies achieving the min h(X|Y{")
give a good estimation error

What Does Entropy Fail to Capture?

Entropy is invariant to permutations = It fails to
capture the concentration of measure

Question: Can we find a class of distributions such
that variance is a monotonic function of entropy?

UNIMODAL DISTRIBUTION

(Gaussian Distribution
For Gaussian distributions,

. 1 . "
21X — X(Y™)?] = Var(X|Y) = 562 MXIYT),

= A lower entropy directly implies a lower MSE.
Can it be true for more general unimodal distribu-
tions?’

Unimodal Distribution

Theorem 3. For unimodal distributions wit?@lex-

ponentially decreasing tails, i.e., p(X) = e~ /72
where 6 > 1,
p2-h(X) v o - 2B (X)
< Var(X) < < 4
2me T ar(X) < (Z(X))P — 27e (4

for some constant o, 3 > 0 and Fisher information
ﬂ 2
I(X) = E[(55 logp(x)) "]

Conditional Entropy as a Proxy for MSE

e A small entropy is necessary but not sufficient

—

to achieve a small MSE

e Once the posterior distribution satisfies the en-
hanced unimodality condition, a strategy that
minimizes conditional entropy can give an ex-

—

ponentially decreasing MSE

e Open question: what strategy can effectively
form and maintain a unimodal posterior distri-
bution?

Acknowledgement: This research was partially supported
by MURI grant W911NF-11-1-0391.

Reference:
[1] T. Tsiligkaridis, B. M. Sadler, and A. O. Hero, “A collaborative 20
questions model for target search with human-machine interaction,” in

ICASSP, 2018 IEEFE International Conference on.
6516—-6520.

IEEE, 2013, pp.

[2] B. Jedynak, P. I. Frazier, R. Sznitman et al., “Twenty questions with
noise: Bayes optimal policies for entropy loss,” Journal of Applied Prob-
ability, vol. 49, no. 1, pp. 114—-136, 2012.




