Learning Latent Variable Gaussian Graphical Models
Zhaoshi Meng1, Brian Eriksson2, Alfred Hero1 \hspace{1cm} 1 University of Michigan \hspace{0.5cm} 2 Technicolor Research Center

Problem Statement
Many applications where the number of covariates(p) is much larger than the number of observations (n), i.e., a “large p, small n” regime

Gaussian Graphical Model (GGM)
GGM characterizes distribution via conditional dependency relations

- **Key Limitation:** Real-world data does not fit well to sparse GGM

Main Assumptions

Assumption 1 (Restricted Fisher Eigenvalue). The Fisher information of the true model is sufficiently curved (i.e., lower bounded by a quadratic function) along restricted sparse and low-rank directions, respectively.

Implication: Parameter consistency and error rate can be established \cite{Neyshabur2012}.

Assumption 2 (Structural Fisher Incoherence). The maximum eigenvalue of the projected Fisher information w.r.t. sparse and low-rank subspace pairs is upper bounded.

Implication: Parameter consistency for “dirty” superposition model \cite{Yang2013}.

Assumption 3 (Effective Rank). The effective rank of true marginal covariance matrix increases more slowly than p \cite{Lounici2012}.

$$r_{\text{eff}}(\Sigma) := \text{tr}(\Sigma)/\|\Sigma\|_2$$

(Right: Validation of Assumption 3. Effective ranks of randomly generated LVGGMs with various configurations.)

Main Result
Theorem. Suppose Assumptions 1-3 hold for the true marginal precision matrix Θ. Assume $n \geq O(\log^* p)$ and the regularization parameters satisfy

$$\lambda = 160C_1p^{3/2}\sqrt{\log p}/n$$

$$\mu = C_2p^{3/2}\sqrt{r_{\text{eff}} \log p}/n.$$

Then with high probability approaching one, we have error rate

$$\|\hat{\Theta} - \Theta\|^2_F \leq 6\lambda \sqrt{n \log p / n} + 2\sqrt{r_{\text{eff}} \cdot r \cdot \log(2p)}.$$

Our Contributions
- High-dimensional parameter estimation error bounds for LVGGM under mild conditions:
 - Restricted Fisher Eigenvalue
 - Structural Fisher Incoherence
 - Empirically, the covariance often has low effective rank which leads to loosening of convergence conditions ($n \geq O(\log^* p)$) and improved error rate (similar to sparse GGM)

Our theory predicts required sample size and regularization parameters to ensure LVGGM convergence

Acknowledgement This work is in part supported by ARO grant W911NF-11-1-0391.

(2) Hsieh et al., BIC & QIC: Sparse inverse covariance estimation for a million variables. NIPS 2013.