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Learning to Aggregate Information for Sequential Inferences

Problem Statement

Objective

Learn a mechanism {δ, γ, η} from training data {x(0)1 , x
(0)
2 , · · · , x(0)M } and

{x(1)1 , x
(1)
2 , · · · , x(1)N } to sequentially classify testing sequence.

δ : R→ {0, 1} : stopping rule
γ : R→ {0, 1} : final decision rule
η : Rd → R : information accumulation rule

Criterion

Minimize ω0N0 + ω1N1 given PD and PF constraints

Assumption

{x(0)1 , x
(0)
2 , · · · , x(0)M } and {x(1)1 , x

(1)
2 , · · · , x(1)N } are conditionally iid
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Our Method

Optimization problem derived from Martingale theory

r̂? = arg min
r̂

ω0∫
− log(r̂)p0

+
ω1∫

log(r̂)p1

s.t.

∫
r̂ p0 = 1 and

∫
r̂−1p1 = 1

Optimization problem by imposing Reproducing Kernel structure

r̂? = min
α

ω0

1
M

∑M
j=1 α

TK(x
(0)
j )
− ω1

1
N

∑N
i=1 α

TK(x
(1)
i )

s.t.
1

M

M∑
j=1

exp(−αTK(x
(0)
j )) = 1 and

1

N

N∑
i=1

exp(αTK(x
(1)
i )) = 1
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Experimental Results
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(a) Synthetic 2D Gaussian
Mixture
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(b) MNIST Handwritten
Digits

Figure: Data used in experiments
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Experimental Results
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(a) Error vs Expected
Sampling Cost for Synthetic
Data Example
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(b) Error vs Expected
Sampling Cost for MNIST
Digits Data

Figure: Sequential Classification Experiments
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