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Statistical optimality vs.
Computation tractability

Active research differentiating “optimal rate” and
“computable optimal rate” in statistical estimation
and machine learning:

• Sparse PCA detection (Berthet and Rigollet, 2013).

• Submatrix detection (Ma and Wu, 2013).

• Learning halfspaces (Daniely, Linial & Shalev-Shwartz, 2013)

• Sparse linear regression (our work)

Sparse Linear Regression: A Classical Problem

Observe a design matrix X ∈ Rn×d and a response
vector y = Xθ∗ + w such that
•w ∼ N(0, σ2Id×d).
• θ∗ ∈ Rd is k-sparse, k � d.

Goal: find a k-sparse estimator θ̂ of θ∗ such that the
prediction loss E[‖X(θ̂ − θ∗)‖22] is small.
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Application: signal processing, financial data anal-
ysis, bioinformatics, imaging technology, etc.

Algorithms and Upper Bounds

Combinatorial Algorithm (NP-hard): `0-based esti-
mator θ̂`0 := argminθ∈B0(k) ‖Xθ − y‖2:
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Poly-time Algorithm: run Lasso, then truncate it to
be k-sparse.
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where γ < 1 is the Restricted Eigenvalue of matrixX.

Key Observation: A 1/γ2 performance gap between
the combinatorial estimator and the (known) poly-
time estimator. Is there a better poly-time estimator?

Main Theoretical Result

Take-home Message
•There is a fundamental performance gap between

poly-time algorithms and exponential-time algo-
rithms for sparse linear regression.
•Gap is characterized by the restricted eigenvalue.

Theorem Assume NP 6⊂ P/poly. For any γ > 0
and any (d, n, k) relation, there is an X ∈ Rn×d

with restricted eigenvalue γ, such that any k-sparse
poly-time estimator θ̂poly satisfies:
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Proof Sketch

We prove the hardness of estimating sparse vector
θ∗ by a chain of reduction arguments.

Step 1: Construct a hard problem P1

•There is a matrixM , such that givenMu∗ for some
sparse vector u∗, recovering u∗ is computationally
hard.
•Prove the hardness of P1 by reducing from the

exact 3-set covering problem (NP-hard).

Step 2: Reduce P1 to an auxiliary problem P2′

•Given (M,Mu∗), construct matrix

X :=

[
M
γG

]
G is random Gaussian matrix

y′ :=

[
M
0

]
u∗

γ
+ w w is random Gaussian vector

The goal of problem P2′ is to recover θ∗ := u∗/γ.
•P2′ is computationally hard since P1 is hard.

Step 3: Reduce P2′ to the regression problem P2
•For regression problem P2, given

X :=

[
M
γG

]
G is random Gaussian matrix

y := Xθ∗ + w w is random Gaussian vector

The goal is to recover θ∗.
•Observe that ‖y − y′‖2 = ‖Gu∗‖2. Choosing rea-

sonably small u∗, then the hardness of P2′ implies
the hardness of P2.


