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Statistical optimality vs.
Computation tractability

Active research differentiating “optimal rate” and
‘computable optimal rate” in statistical estimation
and machine learning:

Impossible Combinatorial  Polynomial-time
to achieve algorithm algorithm
-
Error Rate

e Sparse PCA detection (Berthet and Rigollet, 2013).

e Submatrix detection (Ma and Wu, 2013).

e Learning halfspaces (Daniely, Linial & Shalev-Shwartz, 2013)
e Sparse linear regression (our work)

Sparse Linear Regression: A Classical Problem
Observe a design matrix X € R"*? and a response
vector y = X60* + w such that

ew ~ N(0,0%;xq).

o 0* ¢ R?is k-sparse, k < d.

Goal: find a k-sparse estimator 6 of §* such that the
prediction loss E[|| X (6 — 6*)||3] is small.
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Application: signal processing, financial data anal-
ysis, bioinformatics, imaging technology, etc.

Sparse Linear Regression
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Algorithms and Upper Bounds

Combinatorial Algorithm (NP-hard): /,-based esti-
mator 0y, := arg mingeg, i) || X0 — y||:
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Poly-time Algorithm: run Lasso, then truncate it to
be k-sparse.
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where v < 1 1s the Restricted Eigenvalue of matrix X.

Key Observation: A 1/+° performance gap between
the combinatorial estimator and the (known) poly-
time estimator. Is there a better poly-time estimator?

Main Theoretical Result

Take-home Message

e There is a fundamental performance gap between
poly-time algorithms and exponential-time algo-
rithms for sparse linear regression.

e Gap is characterized by the restricted eigenvalue.

Theorem Assume NP ¢ P/poly. For any v > 0
and any (d,n, k) relation, there is an X ¢ R"*¢
with restricted eigenvalue -, such that any k-sparse
poly-time estimator 0, satisfies:
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Proof Sketch

We prove the hardness of estimating sparse vector
6* by a chain of reduction arguments.

Step 1: Construct a hard problem P1

e There is a matrix M, such that given Mu* for some
sparse vector u*, recovering v* iIs computationally
hard.

e Prove the hardness of P1 by reducing from the
exact 3-set covering problem (NP-hard).

Step 2: Reduce P1 to an auxiliary problem P2’
e Given (M,Mu*), construct matrix

M . . .

X = ”VG} G 1s random Gaussian matrix
M ut . .

Y = 0 } i +w w is random Gaussian vector
L Y

The goal of problem P2’ is to recover 6* := u*/~.
e P2’ is computationally hard since P1 is hard.

Step 3: Reduce P2’ to the regression problem P2
e For regression problem P2, given

X = Hé} Gz Is random Gaussian matrix

y = X0+ w wisrandom Gaussian vector

The goal is to recover 6*.

e Observe that ||y — ¢/||. = ||Gu*|2>. Choosing rea-
sonably small v*, then the hardness of P2" implies
the hardness of P2.



