Creating Smart Agents:
A Distributed Control Theory for DES

Kai Cai
Osaka City University

RW30 Workshop at CDC’17
2017.12.11
I am interested in multi-agent systems:

I am working on both agents with continuous dynamics and agents with discrete-event dynamics
RW30: control architectural summary

Centralized supervisor

Agents
RW30: control architectural summary

Decentralized supervisor

Agents

Decentralized supervisor
RW30: control architectural summary

Hierarchical supervisor

High-level plant

Agents
RW30: control architectural summary

- Heterarchical supervisor
 - High-level decentralized supervisor
 - Decentralized supervisor
 - Decentralized supervisor

Agents
RW30: control architectural summary

Centralized (monolithic): 1987-

Decentralized: 1988-
Hierarchical: 1991-

Heterarchical: 1996-
But, are these architectures suitable for controlling multi-agent systems, if individual agents are expected to be autonomous and smart
Distributed (for smart agents)

Interaction graph

Local controllers

Agents
How to design distributed control?

Suppose we have:

Can we decompose the supervisor to get:

Interaction graph
How to decompose?
control cover based on agent i’s control information
Local controllers are quotient dynamic systems \textit{modulo} locally unavailable control information.
Supervisor localization for distributed control synthesis:

- Given N agents (plant)
- Given a collective behavior (specification)

- First, compute the centralized supervisor SUP
 Then, decompose SUP into a set of local controllers LOC_i such that

$$\text{LOC}_1 \ || \ \cdots \ || \ \text{LOC}_N \ \equiv \ \text{SUP}$$
plant

specification

localization algorithm

local controllers
Distributed architecture emerges:

Interaction graph is part of solution

Local controllers

Agents
Example: warehouse automation

Kiva Systems

No collisions
No deadlocks
For large-scale systems

Hierarchical supervisor

Decentralized supervisors

Interaction graph

Alternative supervisor localization
RW30: control architectural summary

Centralized (monolithic): 1987-

Decentralized: 1988-
Hierarchical: 1991-

Heterarchical: 1996-

Distributed: 2010-
Localization for timed DES

Standard RW framework: logical specifications

RW framework + time: temporal specifications

tick event: time delay, hard deadline
Localization for timed DES

Enforcing:
• temporal specifications
• logical specifications

Centralized supervisor

Interaction graph
local tick-preemptors
local controllers

Separation Principle
Localization for infinite-behavior DES

RW framework + time:
finite-behavior temporal specifications

RW framework + temporal logic:
infinite-behavior temporal (**liveness**) specifications

ω-languages: eventually, infinitely often, always,
Localization for infinite-behavior DES

Enforcing:
• infinite specifications
• finite specifications

Interaction graph

Centralized supervisor

Separation Principle
Conclusions

- **Supervisor localization** as a distributed control theory for discrete-event systems
 - Anything you can do globally, you can do locally

- **Localization theory**
 - Controllability
 - Observability
 - Opacity / diagnosability / detectability
 - State-minimization, Bisimulation-minimization
Localization: limitations and promises

Top-down:
- Global control design
- Local implementation

Bottom-up:
- Global verification
- Local control design

Convergence: top-down inspired bottom-up
Workshop CDC’14, Los Angels