
CGR 04-04

Modular Approaches to Diagnosis and Verification of

Discrete Event Systems

Olivier Contant, Stéphane Lafortune, and

Demosthenis Teneketzis

Department of Electrical Engineering and Computer Science,

The University of Michigan,

1301 Beal Avenue, Ann Arbor, MI 48109–2122 USA

{olivier, stephane, teneket}@eecs.umich.edu

http://www.eecs.umich.edu/umdes/

1 Introduction

Monitoring and diagnosis methodologies that are based upon discrete-event mod-

els of dynamic systems have proved successful in many application areas including

document processing systems, heating, ventilation, and air-conditioning systems, in-

telligent transportation systems, chemical process control, and telecommunication

networks. Most of the discrete-event fault diagnosis methodologies that have been

studied in the literature require a “monolithic” model of the system under consider-

ation for diagnosability analysis and/or construction of the diagnostic protocol; see

(Lafortune et al., 2001) and the references therein. Notable exceptions include the

approaches developed in (Holloway and Chand, 1994; Ricker and Fabre, 2000; Fabre

et al., 2002; Garćıa et al., 2002; Su et al., 2002; Debouk et al., 2002; Genc and Lafor-

tune, 2003) where the modular structure of the underlying system is exploited by the

respective monitoring or diagnostic protocols. This paper has a similar objective,

although the approach adopted is different from those in the above references.

We consider systems that are modeled by the parallel composition of a set of

automata. Each individual automaton models a component or subsystem of the

overall system. The coupling of these system components is captured by the use

1

of common events. We are concerned with systems where the construction of the

complete system model (namely, the monolithic model obtained by performing the

parallel composition of the set of individual automata) is computationally difficult or

intractable, making the use of fault diagnosis methodologies such as the “Diagnoser

Approach” in (Sampath et al., 1995; Debouk et al., 2000; Contant et al., 2002)

impractical. Therefore, it is necessary to develop modular approaches that are

computationally tractable for analyzing the diagnosability properties of the system

and for synthesizing appropriate diagnostic protocols. By “modular approaches”

we mean approaches that exploit the structure of the system as captured by the

individual automata and their respective sets of common events.

The first contribution of this paper is to present a new notion of diagnosability

that is explicitly geared towards systems with modular representations. This notion

of modular diagnosability, presented in Section 3, is adapted from the notion of diag-

nosability introduced in (Sampath et al., 1995). Necessary and sufficient conditions

for modular diagnosability are presented and discussed. The second contribution

of this paper is the development in Section 4 of a novel algorithm for verifying

modular diagnosability. This algorithm (abbreviated MDA hereafter) proceeds in-

crementally by including the automata models of other system components only if

they are required to draw definitive conclusions about the diagnosability of faults

within a given system component. A key assumption made in the development

of MDA is that all common events among two or more system components are

observable.

2 System Model

Let I be the total number of components or subsystems in the given modular

system under consideration. Let T = {1, . . . , I} and S ⊆ T . Elements i of T are

often termed “sites” hereafter. We use the notation

GS = (XS , ΣS , δS , xS0
, XSm) (1)

to denote the automaton with state space XS , set of events ΣS , (partial) transition

function δS , initial state xS0
, and set of marked states XSm . When S = T , GS

denotes the global (or complete) system model. When S = {i}, with i ∈ T , GS

denotes individual component model i. When S ⊂ T , S 6= {i}, i ∈ T , GS denotes

the partial system model comprised of the individual automata in the set S, which

2

we will call the “system GS” hereafter. In all of the above cases, system GS accounts

for the normal and failed behavior of the components in S, consistent with the

Diagnoser Approach of (Sampath et al., 1995; Sampath et al., 1996). GS =‖z∈S Gz

is obtained by composing the individual automata Gz, z ∈ S, using the parallel

composition operation.

The behavior of the system GS is described by the prefix-closed language L(GS)

generated by GS . L(GS) is assumed to be live. This means that there is a transition

defined at each state x in XS , i.e., GS cannot reach a point at which no event is

possible. The liveness assumption on L(GS) is made for the sake of simplicity.

With slight modifications, all the main results of this paper hold true when the

liveness assumption is relaxed. Some of the events in ΣS are observable, i.e., their

occurrence can be observed by sensors, while the rest are unobservable. We use the

notation ΣoS
and ΣuoS

to represent the set of observable and unobservable events

of GS , respectively, where ΣoS
= ΣS \ ΣuoS

. Let ΣfS
denote the set of fault events

in the system GS . Without loss of generality, we assume that ΣfS
⊆ ΣuoS

, since an

observable fault event can be diagnosed trivially.

Due to page limitation, it has been necessary to assume that the reader is fa-

miliar with basic notions1 in languages and automata theory and with the notation

and main concepts of the Diagnoser Approach of (Sampath et al., 1995), such as

diagnosers, certain and uncertain states, and indeterminate cycles. We add the fol-

lowing definitions regarding notation. The notation Σ = Σ′∪̇Σ′′ indicates that the

event set Σ is the disjoint union of Σ′ and Σ′′, i.e., Σ′ = Σ \ Σ′′. Let R ⊂ T . The

event set ΣR is partitioned as ΣR = ΣCMR
∪̇ΣPVR

, where ΣCMR
= ΣR ∩ [∪z∈T\RΣz]

represents the set of common events in GR and where ΣPVR
represents the set

of private events in GR. We use the notation ΣCMoR
= ΣCMR

∩ ΣoR
to represent

the set of common and observable events. The notation CoAc(GS) represents the

automaton obtained from GS by retaining only those states x of GS that are coac-

cessible, namely, that can reach a (marked) state in XSm . This notation will often

be specialized to CoAc(GS , Mx) where Mx will be a particular label associated with

the marked states of GS . In this case, CoAc(GS , Mx) will be the coaccessible part

of GS with respect to the marked states of GS that are labeled with Mx.

It will be necessary in many instances to explicitly identify the event set associ-

ated with an automaton. By default, the event set ΣS associated with automaton

1See, e.g., Chapter 2 of (Cassandras and Lafortune, 1999).

3

GS will be ΣS := {σ ∈ s : s ∈ L(GS)}, namely, all the events that appear in all the

traces in L(GS). In special cases it is required to define a larger set of events as-

sociated with GS than the default one. In this regard, the notation (GS , Σ) will

denote the automaton GS together with the event set Σ such that Σ ⊇ ΣS . For

example, (Gi, ΣS) implies that the original event set Σi of Gi is now augmented by

the set ΣS \ Σi. While (Gi, ΣS) has the same language properties as (Gi, Σi), it has

different behavior when performing parallel composition (or, more generally, any

operation using sets of events) with other modules as it will prevent the occurrence

of events in ΣS \ Σi.

We define

Obs(GS , Σobs) = (Xobs
S , Σobs

S , δobs
S , xobs

S0
) (2)

to be the observer of GS with respect to Σobs (i.e., the set of specific events to be

observed) where Σobs ⊂ ∪z∈T Σz and Σobs
S = ΣS ∩ Σobs. (OLIV: put the definition

on the observer or detector as you wish - See (Cassandras and Lafortune, 1999) for

the complete definition of an observer.) For example, Obs(Gi, ΣCMl
), l 6= i, is the

observer of Gi with respect to ΣCMl
, the common events of Gl with Gi.

Let ΣX and ΣY be any sets of events. We define two projection operators rela-

tive to these sets, P{ΣX ,ΣY } for the usual natural projection and R{ΣX ,ΣY } for the so-

called “reverse” projection. Specifically, the natural projection P{ΣX ,ΣY } : Σ∗
X → Σ∗

Y

is defined in the usual manner:

P{ΣX ,ΣY }(ǫ) := ǫ (3)

P{ΣX ,ΣY }(σ) :=

{
σ if σ ∈ ΣY

ǫ if σ /∈ ΣY

(4)

P{ΣX ,ΣY }(sσ) := P{ΣX ,ΣY }(s)P{ΣX ,ΣY }(σ) for s ∈ Σ∗
X , σ ∈ ΣX .

In contrast, the reverse projection R{ΣX ,ΣY } is applied to traces of events from

Σ∗
X and produces “inverse” traces from Σ∗

Y as is usually done in inverse projection

operations. More precisely, R{ΣX ,ΣY } : Σ∗
X → 2Σ∗

Y is defined as follows:

R{ΣX ,ΣY }(s) = {t ∈ Σ∗
Y : P{ΣY ,ΣX}(t) = s}. (5)

The natural and reverse projections can also be defined with respect to a par-

ticular language L. For L ⊆ Σ∗
Y ,

PL
{ΣX ,ΣY }(s) = {t ∈ L : P{ΣX ,ΣY }(s) = t}, (6)

4

and

RL
{ΣX ,ΣY }(s) = {t ∈ L : P{ΣY ,ΣX}(t) = s}. (7)

We conclude this section by stating a key assumption that will be required for the

results presented in the remainder of the paper: all common events are observable.

This implies that all faults are private events (since they are unobservable).

3 Modular Diagnosability

We define the notion of modular diagnosability as follows.

Definition 1 : Modular Diagnosability

Let T = {1, ..., I}, S ⊆ T , GS = ‖z∈S Gz, and S− ⊆ S. The language L(GS) is

modularly diagnosable w.r.t. (Σoz : z ∈ S) and (Σfz
: z ∈ S−) if ∀i ∈ S−, ∀f ∈ Σfi

,

∀s ∈ L(GS) s.t. s ends with f , ∃n ∈ N s.t. ∀t ∈ L(GS)/s, ‖ P{ΣS ,Σoi
}(t) ‖ ≥ n

⇒ D(st) = 1. The diagnosability condition function D is given by

D(st) =

1 if ω ∈ R
L(GS)
{ΣoS

,ΣS}
[P{ΣS ,ΣoS

}(st)] ⇒ f ∈ ω,

0 otherwise.
(8)

To draw comparisons between our modular diagnosability algorithm, presented

in Section 5, and any other potential approach, we give necessary and sufficient con-

ditions for modular diagnosability based on monolithic constructions of the system

model and diagnoser for a given set S of system components. GdS
and G′

S denote,

respectively, the diagnoser of GS and the non-deterministic automaton built from

GS by eliminating unobservable events; both are defined in (Sampath et al., 1995).

Definition 2 : FMi-indeterminate cycle

A set of F -uncertain states q1, q2, . . . , qn ∈ QdS
is said to form an FMi- indetermi-

nate cycle in GdS
if the following condition C1 is satisfied.

C1) States q1, q2, . . . , qn ∈ QdS
form a cycle in GdS

with δdS
(qu, σu) = qu+1, u =

1, . . . , n − 1, δdS
(qn, σn) = q1 where σu ∈ ΣoS

, u = 1, . . . , n and ∃l ∈ {1, . . . , n}

s.t. σl ∈ Σoi
.

Considering the states q1, q2, . . . , qn ∈ QdS
, ∃ (xk

u, ℓk
u), (yr

u, ℓ̃r
u) ∈ qu, u =

1, . . . , n, k = 1, . . . , m, and r = 1, . . . , m′ such that:

5

(i) [(F ∈ ℓk
u) ∧ (F /∈ ℓ̃r

u)], for all u, k, and r, where F represents the label

associated with the fault event f ∈ Σfi
, i ∈ S,

(ii) the sequences of states {xk
u}, u = 1, . . . , n, k = 1, . . . , m, and {yr

u}, u =

1, . . . , n, r = 1, . . . , m′, form cycles in G′
S with

• (xk
u, σu, xk

(u+1)) ∈ δG′

S
, u = 1, . . . , n − 1, k = 1, . . . , m, (xk

n, σn, xk+1
1) ∈ δG′

S
,

k = 1, . . . , m − 1, (xm
n , σn, x1

1) ∈ δG′

S
, and

• (yr
u, σu, yr

(u+1)) ∈ δG′

S
, u = 1, . . . , n − 1, r = 1, . . . , m′, (yr

n, σn, yr+1
1) ∈ δG′

S
,

r = 1, . . . , m′ − 1, (ym′

n , σn, y1
1) ∈ δG′

S
.

Remark 1 The symbol “Mi”, in the notation “FMi-indeterminate cycle”, stands

for “Module Gi”. FMi-indeterminate cycles differ slightly from the F -indeterminate

cycles introduced in (Sampath et al., 1995) in two respects. First, we require that

there exists at least one observable event from module Gi in the cycle of states

q1, q2, . . . , qn ∈ QdS
: cf. “∃l ∈ {1, . . . , n} s.t. σl ∈ Σoi

” in Condition C1. Second,

we require that the label F in hypothesis (i) of Condition C1 represents the label

associated with the fault event f ∈ Σfi
, i.e., the fault event f originates from module

Gi.

Theorem 1 : Consider the language L(GS) generated by automaton GS = ‖z∈S Gz.

L(GS) is modularly diagnosable w.r.t. (Σoz : z ∈ S) and (Σfi
: i ∈ S), iff there are

no FMi-indeterminate cycles in the diagnoser GdS
.

The proof of Theorem 1 is similar to the one in (Sampath et al., 1995) and is

therefore omitted.

To gain insight into the definition of modular diagnosability, we reformulate

with minor modifications the notion of diagnosability introduced in (Sampath et

al., 1995) and refer to it from now on as monolithic diagnosability.

Definition 3 : Monolithic Diagnosability

Let T = {1, ..., I}, S ⊆ T , and GS = ‖z∈S Gz. The language L(GS) is monolithically

diagnosable w.r.t. (Σoz : z ∈ S) and (Σfz
: z ∈ S) if ∀i ∈ S, ∀f ∈ Σfi

, ∀s ∈ L(GS)

s.t. s ends with f , ∃n ∈ N s.t. ∀t ∈ L(GS)/s, ‖ P{ΣS ,ΣoS
}(t) ‖ ≥ n ⇒ D(st) = 1,

where the diagnosability condition function D is as in Eq. 8.

Remark 2 Definition 3 differs from the diagnosability definition introduced in (Sampath

et al., 1995) as follows:

6

i.) We use the equation ‖ P{ΣS ,ΣoS
}(t) ‖ ≥ n instead of ‖ t ‖ ≥ n. This modi-

fication implies that cycles of unobservable events are not taken into account when

verifying the diagnosability properties of a system.

ii.) The order of the quantifiers allows one natural number n for each trace s

that ends with a fault event, instead of requiring one natural number for each fault

event f , i.e., for all traces s ending with f . This change2 allows for more precise

choices of lower bounds for fault detection and identification.

In the special case where the considered system GS is composed of a single mod-

ule, i.e., |S| = 1, there are no distinctions between first, the modular and monolithic

definitions, and second, FMi- and F -indeterminate cycles. In the general case, the

main difference between the modular and the monolithic definitions of diagnos-

ability concerns the type of traces that need to be considered. When testing for

diagnosability of a fault event f at the end of trace s, we consider projections of any

continuation t of length greater than n. For monolithic diagnosability, the projection

of t is with respect to the observable events of system GS , i.e., ‖ P{ΣS ,ΣoS
}(t) ‖ ≥ n.

For modular diagnosability, the projection of t is with respect to the observable

events of system Gi, i.e., ‖ P{ΣS ,Σoi
}(t) ‖ ≥ n. Therefore, modular diagnosability

focuses only on traces where events from module Gi, which is the module where the

fault originates, occur with some regularity. Consequently, the notion of modular

diagnosability is weaker than the notion of monolithic diagnosability since more

languages will satisfy this definition than the monolithic one.

Our primary motivation for defining modular diagnosability is to ensure that

after a fault occurs in one of the system modules, detection and isolation of that

fault is only required for continuations that involve events from the given module.

It is reminiscent of the familiar “persistency of excitation” condition in system iden-

tification. In other words, continuations that entirely exclude the module where the

fault originates from cannot lead to a violation of modular diagnosability. (Recall

that the approach that we propose assumes that faults do not bring the system, or

any of its modules, to a halt.)

For the sake of illustration, let us consider a simple Local Area Network (LAN)

composed of several interconnected computers. The LAN is the system to be di-

agnosed and the computers attached to it represent the local systems or modules.

The faults or special events to be detected are “illegal” intrusions into the LAN.

2Other researchers have also independently suggested this change (Yoo, 2003).

7

Therefore if an (unobservable) intrusion occurs at one of the computers and that

computer does not exhibit any behavior after the intrusion, i.e., the local site does

not supply any observable events, then clearly this intrusion does not need to be

diagnosed since it is not exploited. On the other hand, if the intruder takes advan-

tage of its trespass, then it is essential to diagnose the violation. In other words,

we expect that the intruder will sufficiently exert the afflicted computer so that the

intrusion in the LAN can eventually be detected. This concept is similar to the one

used in signature-based Intrusion Detection Systems (IDS) where the signatures are

specific sequences of (observable) events, cf. (Coolen and Luiijf, 2002). IDS gather

sequences of observable events and verify if these sequences match one sequence in

IDS signature databases. In order to potentially match a signature, IDS require

arbitrarily long exertion of the local system.

The following example illustrates the difference between modular and monolithic

diagnosability.

Example 1 Let T = {1, 2, 3}. Consider the system modules G1, G2, and G3, the

monolithic system GT = G1 ‖ G2 ‖ G3, the monolithic diagnoser GdT
, and their

respective event sets Σ1, Σ2, Σ3, ΣT , and ΣdT
. The models are depicted in Fig.

1. We have Σuo = {f}, Σo = {a, b, x, y}, Σ1 = {a, f}, Σ2 = Σ3 = {a, b, x, y},

ΣT = {b, f}, and ΣdT
= {b}. The diagnoser GdT

contains a cycle of F -uncertain

states, where F is the label associated with the fault event f ∈ Σ1. We check the

necessary and sufficient conditions of modular and monolithic diagnosability. The

diagnoser GdT
contains a cycle formed by the self-loop b ∈ Σ2∩Σ3 at the F -uncertain

state q = {3F, 4N}. It can be verified that this is an F -indeterminate cycle in GdT
.

Therefore the system GT is not monolithically diagnosable w.r.t. (Σoz : z ∈ T)

and (Σfz
: z ∈ T). On the other hand, there does not exist an FMi-indeterminate

cycle in GdT
since f ∈ Σ1 and b /∈ Σ1. Hence GT is modularly diagnosable w.r.t.

(Σoz : z ∈ T) and (Σfz
: z ∈ T). Intuitively, the above results are clear since the

(monolithic) diagnoser contains only events from subsystems G2 and G3 while the

fault to be diagnosed originates from module G1. ♦

We formalize the relationship between modular and monolithic diagnosability

in the following theorem.

Theorem 2

Part 1. Let T = {1, ..., I}, S ⊆ T , and GS = ‖z∈S Gz. If the language L(GS)

8

2

1

3

4

2

1

3

2

1

4

3

1N 3F, 4N1

2

4

3

b

f

x

b

y a

b

f

a

a

a b b

ay
x

Module G2Module G1 Module G3

b b

Monolithic Diagnoser GdT
Monolithic System GT = G1 ‖ G2 ‖ G3

f

b

b

b

Figure 1: Modular vs. Monolithic Diagnosability Example

is monolithically diagnosable w.r.t. (Σoz : z ∈ S) and (Σfz
: z ∈ S) then L(GS) is

modularly diagnosable w.r.t. (Σoz : z ∈ S) and (Σfz
: z ∈ S).

Part 2. Let T = {1, ..., I}, S ⊆ T , GS = ‖z∈S Gz, and i ∈ S. If the language L(Gi)

is monolithically diagnosable w.r.t. Σoi
and Σfi

then L(GS) is modularly diagnosable

w.r.t. (Σoz : z ∈ S) and Σfi
.

Proof: Theorem 2 Part 1

We prove the contrapositive, i.e., if L(GS) is not modularly diagnosable w.r.t. (Σoz :

z ∈ S) and (Σfz
: z ∈ S), then L(GS) is not monolithically diagnosable w.r.t. (Σoz :

z ∈ S) and (Σfz
: z ∈ S).

L(GS) not modularly diagnosable w.r.t. (Σoz : z ∈ S) and (Σfz
: z ∈ S) implies

that ∃i ∈ S, ∃f ∈ Σfi
, ∃s ∈ L(GS) s.t. s ends with f , ∀n ∈ N, ∃t ∈ L(GS)/s

such that ‖ P{ΣS ,Σoi
}(t) ‖ ≥ n ⇒ D(st) = 0. Since ‖ P{ΣS ,Σoi

}(t) ‖ ≥ n implies

‖ P{ΣS ,ΣoS
}(t) ‖ ≥ n, then L(GS) is not monolithically diagnosable w.r.t. (Σoz :

z ∈ S) and (Σfz
: z ∈ S).

Proof: Theorem 2 Part 2

By Part 1 of Theorem 2, if the language L(Gi) is monolithically diagnosable w.r.t.

Σoi
and Σfi

, then L(Gi) is modularly diagnosable w.r.t. Σoi
and Σfi

. We now prove

the following: if L(Gi) is modularly diagnosable w.r.t. Σoi
and Σfi

then L(GS) is

modularly diagnosable w.r.t. (Σoz : z ∈ S) and Σfi
. We prove the contrapositive of

the above statement, i.e., if L(GS) is not modularly diagnosable w.r.t. (Σoz : z ∈ S)

and Σfi
, then L(Gi) is not modularly diagnosable w.r.t. Σoi

and Σfi
.

9

L(GS) not modularly diagnosable w.r.t. (Σoz : z ∈ S) and Σfi
implies that

∃f ∈ Σfi
, i ∈ S, ∃s ∈ L(GS) s.t. s ends with f , ∀n ∈ N, ∃t ∈ L(GS)/s such that

‖ P{ΣS ,Σoi
}(t) ‖ ≥ n ⇒ D(st) = 0, i.e., ∃ω1, ω2 ∈ L(GS) such that

- f ∈ ω1 where f ∈ Σfi
, i ∈ S, ω1 = s1t1, and s1 ends with f ,

- f /∈ ω2,

- P{ΣS ,ΣoS
}(ω1) = P{ΣS ,ΣoS

}(ω2), and

- P{ΣS ,Σoi
}(t1) is arbitrarily long.

Let ωi
1 = P{ΣS ,Σi}(ω1), si

1 = P{ΣS ,Σi}(s1), ti1 = P{ΣS ,Σi}(t1), and ωi
2 = P{ΣS ,Σi}

(ω2). Hence we have the following:

- ωi
1, ω

i
2 ∈ L(Gi),

- f ∈ ωi
1 where ωi

1 = si
1t

i
1 and si

1 ends with f ,

- f /∈ ωi
2,

- P{Σi,Σoi
}(ω

i
1) = P{Σi,Σoi

}(ω
i
2), and

- P{Σi,Σoi
}(t

i
1) is arbitrarily long.

Therefore L(Gi) is not modularly diagnosable w.r.t. Σoi
and Σfi

.

4 Properties of Modular Diagnosability

The following lemmata are needed for the proof of Theorem 4. We define ND =

T \ D where D = {z : L(Gz) is monolithically diagnosable w.r.t. Σoz and Σfz
}.

Lemma 1 If ∀i ∈ S ∩ ND, L(GS) is modularly diagnosable w.r.t. (Σoz : z ∈ S)

and Σfi
then L(GS) is modularly diagnosable w.r.t. (Σoz : z ∈ S) and (Σfz

: z ∈ S).

Proof: We assume that ∀i ∈ S ∩ ND, L(GS) is modularly diagnosable w.r.t.

(Σoz : z ∈ S) and Σfi
. Therefore Definition 1 is satisfied ∀i ∈ S∩ND and ∀f ∈ Σfi

.

By Part 2 of Theorem 2, Definition 1 is satisfied for ∀i ∈ S ∩D and ∀f ∈ Σfi
. Thus

L(GS) is modularly diagnosable w.r.t. (Σoz : z ∈ S) and (Σfz
: z ∈ S).

Lemma 2 If ∀i ∈ T ∩ND, ∃S ⊆ T s.t. i ∈ S and L(GS) is modularly diagnosable

w.r.t. (Σoz : z ∈ S) and Σfi
then L(GT) is modularly diagnosable w.r.t. (Σoz : z ∈ T)

and (Σfz
: z ∈ T).

Proof: We prove the contrapositive: if L(GT) is not modularly diagnosable w.r.t.

(Σoz : z ∈ T) and (Σfz
: z ∈ T) then ∃i ∈ T ∩ ND s.t. ∀S ⊆ T with i ∈ S, L(GS)

is not modularly diagnosable w.r.t. (Σoz : z ∈ S) and Σfi
.

10

From Definition 1 and Part 2 of Theorem 2, L(GT) not modularly diagnosable

w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T) implies that ∃i ∈ T ∩ ND, ∃s, s′ ∈ L(GT),

∃f ∈ Σfi
s.t. f ∈ s and f /∈ s′, P{ΣT ,ΣoT

}(s) = P{ΣT ,ΣoT
}(s

′), and P{ΣT ,Σoi
}(t) is

arbitrarily long. Also, ∀S ⊆ T s.t. i ∈ S we have the following: P{ΣT ,ΣoS
}(s) =

P{ΣT ,ΣoS
}(s

′) and P{ΣT ,Σoi
}(s) = P{ΣT ,Σoi

}(s
′) since P{ΣT ,ΣoT

}(s) = P{ΣT ,ΣoT
}(s

′).

Furthermore, P{ΣT ,Σoi
}(s

′) is arbitrarily long since P{ΣT ,Σoi
}(s) is arbitrarily long.

Let sx, s′x ∈ L(GS) s.t. sx = P{ΣT ,ΣS}(s) and s′x = P{ΣT ,ΣS}(s
′). Then f ∈ sx and

f /∈ s′x. Also P{ΣS ,Σoi
}(sx), P{ΣS ,Σoi

}(s
′
x) are arbitrarily long since P{ΣT ,Σoi

}(s),

P{ΣT ,Σoi
}(s

′) are arbitrarily long.

In summary, ∃i ∈ T ∩ ND s.t. ∀S ⊆ T with i ∈ S, ∃sx, s′x ∈ L(GS), ∃f ∈

Σfi
, f ∈ sx, f /∈ s′x, P{ΣS ,ΣoS

}(sx) = P{ΣS ,ΣoS
}(s

′
x), and P{ΣS ,Σoi

}(sx) is arbitrarily

long. Therefore L(GS) is not modularly diagnosable w.r.t. (Σoz : z ∈ S) and Σfi
.

Corollary 1 If ∀i ∈ T , L(Gi) is monolithically diagnosable w.r.t. Σoi
and Σfi

,

then L(GT) is modularly diagnosable w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T).

Proof: Corollary 1 is a particular case of Lemma 2 when S = {i}.

An elementary Fm-indeterminate cycle, m ∈ {1, . . . , M}, is formed by (i) a

sequence of Fm-uncertain states and (ii) possibly several sequences of events that

form the cycle and satisfy the Fm-indeterminate cycle definition. We call EICz,

z ∈ {1, . . . , Z}, such cycles and tzy, y ∈ {1, . . . , Yz}, their corresponding sequences of

events, where Z represents the total number of elementary Fm-indeterminate cycles

in the diagnoser Gdi
, i ∈ ND, and Yz represents the total number of sequences of

events that satisfy the indeterminate cycle definition for the particular EICz.

For each i ∈ ND, we number and name SEQ1, SEQ2, . . . , SEQXi
all sequences

of events tzy, y = 1, . . . , Yz and z = 1, . . . , Z. Therefore, for each SEQx, x ∈

{1, . . . , Xi}, there are one Fm-indeterminate cycle, one fault of type m, m ∈ {1, . . . , M},

one corresponding sequence of states Qx = q1 . . . qNx , and one sequence of events

tzy, z ∈ {1, . . . , Z}, y ∈ {1, . . . , Yz}, that form the cycle. We attach the label Mx,

x ∈ {1, ..., Xi}, i ∈ ND, to states q ∈ Qx in Gdi
.

The following lemma is a specialized form of Lemma 2.

Lemma 3 Consider S ⊆ T , SEQx, x ∈ {1, ..., Xi}, i ∈ S ∩ ND, and any two

arbitrarily long traces ωx, ω′
x ∈ L(Gi) such that: (i) ωx, ω′

x lead to the indeterminate

11

cycle associated with SEQx in Gdi
; (ii) P{Σi,Σoi

}(ωx) = P{Σi,Σoi
}(ω

′
x) = sSEQxs1

where SEQx = s1s2; (iii) fm ∈ ωx, fm /∈ ω′
x, and fm corresponds to the fault

type associated with SEQx. If ∄ωS , ω′
S ∈ L(GS) such that P{ΣS ,Σi}(ωS) = ωx,

P{ΣS ,Σi}(ω
′
S) = ω′

x, and P{ΣS ,Σoi
}(ωS) is arbitrarily long, then ∄ω, ω′ ∈ L(GT) such

that P{ΣT ,Σi}(ω) = ωx, P{ΣT ,Σi}(ω
′) = ω′

x, and P{ΣT ,Σoi
}(ω) is arbitrarily long.

Proof: We prove by contradiction. By assumption, ∃S ⊆ T , ∃SEQx, x ∈ {1, ..., Xi},

i ∈ S ∩ ND, and there exist two arbitrarily long traces ωx, ω′
x ∈ L(Gi) such

that: (i) ωx, ω′
x lead to the indeterminate cycle associated with SEQx in Gdi

; (ii)

P{Σi,Σoi
}(ωx) = P{Σi,Σoi

}(ω
′
x) = sSEQxs1 where SEQx = s1s2; (iii) fm ∈ ωx,

fm /∈ ω′
x, and fm corresponds to the fault type associated with SEQx. Suppose

that (iv) ∄ωS , ω′
S ∈ L(GS) such that P{ΣS ,Σi}(ωS) = ωx, P{ΣS ,Σi}(ω

′
S) = ω′

x, and

P{ΣS ,Σoi
}(ωS) is arbitrarily long and (v) ∃ω, ω′ ∈ L(GT) such that P{ΣT ,Σi}(ω) = ωx,

P{ΣT ,Σi}(ω
′) = ω′

x, and P{ΣT ,Σoi
}(ω) is arbitrarily long.

By assumption (v) and the natural projection definition, ∃ωS , ω′
S ∈ L(GS) such

that P{ΣT ,ΣS}(ω) = ωS , P{ΣT ,ΣS}(ω
′) = ω′

S , and P{ΣS ,Σoi
}(ωS) is arbitrarily long.

Furthermore we have P{ΣS ,Σi}(ωS) = P{ΣS ,Σi}[P{ΣT ,ΣS}(ω)] = P{ΣT ,Σi}(ω) = ωx

and P{ΣS ,Σi}(ω
′
S) = ω′

x. Therefore ∃ωS , ω′
S ∈ L(GS) such that P{ΣS ,Σi}(ωS) = ωx,

P{ΣS ,Σi}(ω
′
S) = ω′

x, and P{ΣS ,Σoi
}(ωS) is arbitrarily long, which yields the desired

contradiction.

Remark 3 When the hypothesis of Lemma 3 holds, we say that the indeterminate

cycle associated with SEQx is “Not Reachable” in GS and GT . In other words, the

coupling of module Gi with the remainder of the system results in the elimination

of the traces in L(Gi) that lead to that indeterminate cycle.

Corollary 2 If the hypothesis of Lemma 3 holds for all x, x ∈ {1, ..., Xi}, then

L(GT) is modularly diagnosable w.r.t. (Σoz : z ∈ T) and Σfi
.

Lemma 4 If ∃i ∈ T , ∃S ⊆ T s.t. i ∈ S, Sc = T \ S, and ∃ωS , ω′
S ∈ L(GS) such

that:

(i) ωS , ω′
S violate the modular diagnosability of L(GS) w.r.t. (Σoz : z ∈ S) and

Σfi
, and P{ΣS ,Σoi

}(ωS) = sSEQxs1, SEQx = s1s2, x ∈ {1, ..., Xi};

(ii) ∀σx ∈ ωS, ∀σy ∈ ΣSc , σx 6= σy;

then L(GT) is not modularly diagnosable w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T).

12

Proof: We have GT = GS ‖ GSc . Build GS̃ s.t. L(GS̃) := {ωS , ω′
S}. Define

GT̃ := GS̃ ‖ GSc . By the definition of GT̃ and assumption (ii), ∃ω, ω′ ∈ L(GT̃) s.t.

- P{Σ
T̃

,Σ
S̃
}(ω) = ωS , P{Σ

T̃
,Σ

S̃
}(ω

′) = ω′
S ,

- P{Σ
T̃

,Σo
T̃
}(ω) = P{Σ

T̃
,Σo

T̃
}(ω

′),

- f ∈ ω, f /∈ ω′, where f ∈ Σfi
, and

- P{Σ
S̃

,Σoi
}(ωS) is arbitrarily long because P{ΣS ,Σoi

}(ωS) is arbitrarily long as

it violates modular diagnosability by assumption (i).

Since L(GT̃) ⊆ L(GT), ω, ω′ ∈ L(GT̃) implies ω, ω′ ∈ L(GT) and therefore ω, ω′

violate the modular diagnosability of L(GT) w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T).

We make the following observation regarding the proof of Lemma 4. Any ω ∈

L(GT̃) is built from ωS ∈ L(GS̃) by interleaving events from ΣSc according to the

transition structure of GSc . Hence, since ΣS̃ ∩ ΣSc = ∅, we can build ω′ from

ω′
S by doing the same interleaving as when building ω from ωS . The resulting ω′

necessarily satisfies P{Σ
T̃

,Σo
T̃
}(ω) = P{Σ

T̃
,Σo

T̃
}(ω

′).

Remark 4 When the hypothesis of Lemma 4 holds, we say that the indeterminate

cycle associated with SEQx is “Reachable” in GS and GT . In other words, the

coupling of module Gi with the remainder of the system results in the propagation

of the traces in L(Gi) that lead to that indeterminate cycle.

Lemma 5 If ∃i ∈ T , ∃S ⊆ T s.t. i ∈ S, Sc = T \ S, and ∃ωS , ω′
S ∈ L(GS) such

that:

(i) ωS , ω′
S violate the modular diagnosability of L(GS) w.r.t. (Σoz : z ∈ S) and

Σfi
, and P{ΣS ,Σoi

}(ωS) = sSEQxs1, SEQx = s1s2, x ∈ {1, ..., Xi};

(ii) ∃σx ∈ ωS and ∃σy ∈ ΣSc such that σx = σy;

then L(GT) may or may not be modularly diagnosable w.r.t. (Σoz : z ∈ T) and

Σfi
.

Proof: We have GT = GS ‖ GSc . By assumption (ii), two (exhaustive) cases are

possible. Define ω, ω′ ∈ Σ∗
T such that:

- P{ΣT ,ΣS}(ω) = ωS , P{ΣT ,ΣS}(ω
′) = ω′

S ,

13

- P{ΣT ,ΣoT
}(ω) = P{ΣT ,ΣoT

}(ω
′),

- f ∈ ω, f /∈ ω′, where f ∈ Σfi
, and

- P{ΣS ,Σoi
}(ωS) is arbitrarily long.

Case 1: If such ω, ω′ exist in L(GT), then L(GT) is not modularly diagnosable

w.r.t. (Σoz : z ∈ T) and Σfi
.

Case 2: On the other hand, if no such ω, ω′ exist then L(GT) is modularly

diagnosable w.r.t. (Σoz : z ∈ T) and Σfi
.

We discuss the intuition behind Lemma 5. Any ω ∈ L(GT) is built from ωS ∈

L(GS) by interleaving events from ΣSc according to the transition structure of GSc .

Hence, since ΣS∩ΣSc 6= ∅, any event σx ∈ ΣS∩ΣSc may or may not be synchronized

during the parallel composition GT = GS ‖ GSc . The existence of the traces ω, ω′

in the proof of Lemma 5 depends on the outcome of such synchronization.

Remark 5 If L(GS) is not modularly diagnosable w.r.t. (Σoz : z ∈ S) and Σfi
then

GS necessarily satisfies the hypotheses of Lemmata 4 or 5.

In Fig. 2, we depict the implications of Theorem 2, Corollary 2, and Lemmata

4, 5. The figure shows that if L(Gi) is modularly diagnosable w.r.t. Σoi
and Σfi

, or

L(GS) is modularly diagnosable w.r.t. (Σoz : z ∈ S) and Σfi
, then L(GT) is modu-

larly diagnosable w.r.t. (Σoz : z ∈ T) and Σfi
. If L(Gi) is not modularly diagnosable

w.r.t. Σoi
and Σfi

, or L(GS) is not modularly diagnosable w.r.t. (Σoz : z ∈ S) and

Σfi
, then the output on the modular diagnosability of L(GT) w.r.t. (Σoz : z ∈ T)

and Σfi
is uncertain unless GS satisfies Lemma 4.

5 Test for Modular Diagnosability

In Section 3 we presented the notion of modular diagnosability and conditions nec-

essary and sufficient to guarantee it. In the case of large modular discrete event

systems, the computational complexity associated with the parallel composition of

subsystems and the construction of the diagnoser for the resulting (monolithic) sys-

tem is forbidding. To deal with this problem we propose a novel approach that

tests modular diagnosability by incorporating incrementally, in a systematic man-

ner, subsystems into the test. We prove that our approach provides the correct

14

:
Lem. Lemma.

Cor. 2 Lem. 4

MDiag

MDiag

N-MDiag3

N-MDiagGT

Gi

MDiag

Lem. 5

or

or

N-MDiag1MDiag

MDiag MDiag

Cor. 2
Lem. 5

N-MDiag2

GS

Notes:

2: We assume that GR satisfies hypothesis (ii) of Lemma 5.
3: We assume that GS satisfies hypothesis (ii) of Lemma 4.
4: R ⊂ S ⊆ T , i ∈ R.

1: Subsystem Gi necessarily satisfies hypothesis (ii) of Lemma 5.

MDiag

GR

4

MDiag

MDiag

Thm. 2

Legend:
MDiag Modularly Diagnosable w.r.t. (Σoz

: z ∈ X) and Σfi
,

Not Modularly Diagnosable w.r.t. (Σoz
: z ∈ X) and Σfi

.N-MDiag
where GX is the considered system.

Two Possible Outputs (need to construct the pointed module).
Direct Implication (no computation or construction needed).

Cor. Corollary.:
:
:
:

:

Thm.
:
Theorem.

Figure 2: Properties of Modular Diagnosability

answer to the question “Is L(GT) modularly diagnosable w.r.t. (Σoz : z ∈ T) and

(Σfz
: z ∈ T)?” in a finite number of steps. We proceed as follows. In Section

5.1 we present the algorithm; in Section 5.2 we state and prove its properties; in

Sections 5.3 and 5.4 we present a discussion of the key steps of the algorithm and

online diagnosis, respectively.

5.1 Modular Diagnosability Algorithm

We present the detailed statement of our Modular Diagnosability Algorithm (MDA).

For the sake of clarity, MDA is broken into three algorithms. Algorithm 1 is the core

of MDA; it calls Algorithm 2 to perform preliminary steps involving indeterminate

cycles that could lead to a violation of modular diagnosability. Algorithm 1 also

calls Algorithm 3 where the incremental analysis of each indeterminate cycle is

performed. (For the sake of simplicity, some optional improvements related to the

computational performance of MDA are not included in the presentation below.)

15

Algorithm 1 MDA

1.) Let T = {1, . . . , I}. Construct the local diagnosers Gdi
, i ∈ T , and search for

indeterminate cycles. If, ∀i ∈ T , L(Gi) is monolithically diagnosable w.r.t. Σoi
and

Σfi
, i.e., none of the local diagnosers Gdi

have F -indeterminate cycles, then stop

and declare L(GT) modularly diagnosable w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T).

Else, go to Step 2.

2.) Let ND = T \ D, where D = {z : L(Gz) is monolithically diagnosable

w.r.t. Σoz and Σfz
}. Call Preliminary Function. For each local diagnoser Gdi

,

i ∈ ND, and for each sequence of traces SEQx, x ∈ {1, ..., Xi}, perform the Steps

2-a to 2-d:

2-a.) Mark with the label Mx, x ∈ {1, ..., Xi}, i ∈ ND, the states q ∈ Qx in Gdi
.

The label Mx stands for “State of Gdi
part of the indeterminate cycle associated

with SEQx”.

2-b.) Construct

GCM i = Obs(Gdi
, ΣCMi

). (9)

A state of GCM i is marked with label Mx if one or more of its state components are

marked with Mx.

2-c.) Construct

GICMx = CoAc(GCM i, Mx). (10)

The resulting event set of machine GICMx is denoted by ΣICMx. Enlarge the set of

events ΣICMx by adding ΣCMi
\ ΣICMx to it. The machine GICMx and its newly

associated event set ΣCMi
are hereafter represented by the notation (GICMx, ΣCMi

).

2-d.) Call Reachability Function with argument {i, SEQx, GICMx , ΣICMx ,

ΣCMi
}. If the Reachability Function returns “Reachable” then stop and declare

L(GT) not modularly diagnosable w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T).

3.) Stop and declare L(GT) modularly diagnosable w.r.t. (Σoz : z ∈ T) and

(Σfz
: z ∈ T). ♦

Algorithm 2 - Preliminary Function

I.) For each i ∈ ND, do the following:

i.) Call EICz, z ∈ {1, . . . , Z}, the elementary3 indeterminate cycles in Gdi
and

tzy, y ∈ {1, . . . , Yz}, their corresponding sequences of events, where Z represents the

total number of elementary indeterminate cycles in diagnoser Gdi
, i ∈ ND, and

3A cycle is called elementary if no state appears more than once in it.

16

Yz represents the total number of sequences of events that satisfy the indeterminate

cycle definition for the particular EICz.

ii.) Number and name SEQ1, SEQ2, . . . , SEQXi
all sequences of events tzy,

y = 1, . . . , Yz and z = 1, . . . , Z. To each SEQx, x ∈ {1, . . . , Xi}, associate its cor-

responding Fm-indeterminate cycle, m ∈ {1, . . . , M}, its corresponding sequence of

states Qx = q1 . . . qNx, and its corresponding sequence of events tzy, z ∈ {1, . . . , Z},

y ∈ {1, . . . , Yz}, that form the cycle.

II) Return to MDA with SEQx and Qx, ∀x ∈ {1, . . . , Xi}, ∀i ∈ ND. ♦

Algorithm 3 - Reachability Function {i, SEQx, GICMx , ΣICMx , ΣCMi
}

A.) Let c := 1, Bx
c = {i}, Sc = Bx

c , and

s̃x = P{Σoi
,ΣCMoi

}(SEQx). (11)

Let c := c + 1,

Bx
c = {l : [ΣCM l

∩ ΣICMx 6= ∅ ∨ (l ∈ Bx
c−1)], l ∈ T}, (12)

and

Sc = Bx
c \ Bx

c−1. (13)

B.) Construct

Gmodx
c

= (GICMx , ΣCMi
) ‖ (‖l∈Bx

c ,l 6=i GCM l). (14)

If there does not exist in Gmodx
c

a cycle of states labeled Mx then return to MDA;

otherwise denote by sc
1, s

c
2, . . . , s

c
P the sequences of events that describe such cycles

and go to step C.

C.) ∀p ∈ {1, . . . , P}, let

s̃c
p = P{ΣCMoS

,ΣCMoi
}(s

c
p). (15)

If ∃p ∈ {1, . . . , P} such that s̃x = s̃c
p or if ∃s′x, s′′x, and p ∈ {1, . . . , P} such that

s̃x = s′xs′′x and s′′xs′x = s̃c
p, then go to Step D; otherwise return to MDA.

D.) Construct

G̃c = CoAc(Gmodx
c
, Mx). (16)

Let Σ̃c be the event set of G̃c.

E.) Let c := c + 1 and

17

Bx
c = {l : [(ΣCM l

∩ Σ̃c−1 6= ∅) ∨ (l ∈ Bx
c−1)], l ∈ T}. (17)

Define

Sc = Bx
c \ Bx

c−1. (18)

If Sc 6= ∅ then go to step B; otherwise declare the indeterminate cycle associated

with SEQx “Reachable” and return to MDA. ♦

5.2 Properties of MDA

Theorem 3 MDA returns an answer in a finite number of steps.

Proof: Since there is a finite number I of subsystems and Bx
c is monotonically

increasing by equation 17, the Reachability Function returns an answer in a

finite number of steps for every sequence of events SEQx. Since there is a finite

number of sequences of events SEQx, MDA returns an answer in a finite number

of steps.

Theorem 4 MDA returns the correct answer, namely, whether L(GT) is or is not

modularly diagnosable w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T).

Proof: We prove that Steps 1, 2-d, and 3 of MDA and steps B, C, and E of the

Reachability Function return the correct answer. The correctness of Steps 2-d and 3

of MDA depends on the correctness of the Reachability Function. Thus, we proceed

as follows. We first prove that the Reachability Function returns the correct answer

to the question: “Is the indeterminate cycle associated with SEQx reachable in the

global system behavior L(GT)?”. Then we prove the correctness of Steps 1, 2-d,

and 3 of MDA, using the correctness of the Reachability Function.

Correctness of Step B of the Reachability Function: By construction,

Gmodx
c

is composed of projections of subsystems Gz, where z ∈ S and S = Bx
c .

As a reminder, the states of the indeterminate cycle associated with SEQx in Gdi

are marked with the label Mx and by construction the states of the machines GdS

and Gmodx
c

are marked with labels Mx if one or more state components are marked

with the label Mx. Consider any two arbitrarily long traces ωx, ω′
x ∈ L(Gi) such

that: (i) fm ∈ ωx where fm corresponds to the fault type associated with SEQx;

(ii) fm /∈ ω′
x; (iii) ωx, ω′

x lead to the indeterminate cycle associated with SEQx in

18

Gdi
(where states Qx are labeled Mx); and (iv) P{Σi,Σoi

}(ωx) = P{Σi,Σoi
}(ω

′
x). If

there does not exist in Gmodx
c

a cycle of states labeled Mx then, by construction

of Gmodx
c
, ∄ωS , ω′

S ∈ L(GS) such that P{ΣS ,Σi}(ωS) = ωx, P{ΣS ,Σi}(ω
′
S) = ω′

x,

and P{ΣS ,Σoi
}(ωS) is arbitrarily long. Hence, by Lemma 3 and Remark 3, the

indeterminate cycle associated with SEQx is “Not Reachable” and we return to

MDA. If, in Step B, there exists in Gmodx
c

a cycle of states labelled Mx then we

cannot conclude on the reachability of the indeterminate cycle; thus we number

sc
1, s

c
2, . . . , s

c
p the sequences of events that describe such cycles and go to Step C.

Correctness of Step C of the Reachability Function: Consider any two

arbitrarily long traces ωx, ω′
x ∈ L(Gi) such that: (i) fm ∈ ωx where fm corre-

sponds to the fault type associated with SEQx; (ii) fm /∈ ω′
x; (iii) ωx, ω′

x lead to

the indeterminate cycle associated with SEQx in Gdi
; and (iv) P{Σi,Σoi

}(ωx) =

P{Σi,Σoi
}(ω

′
x) = sSEQxs1 where SEQx = s1s2. From Eqs 11 and 15, we have

that s̃x = P{Σoi
,ΣCMoi

}(SEQx) and, ∀p ∈ {1, . . . , P}, s̃c
p = P{ΣCMoS

,ΣCMoi
}(s

c
p). If

∄p ∈ {1, . . . , P} such that s̃x = s̃c
p and if ∄s′x, s′′x, and p ∈ {1, . . . , P} such that

s̃x = s′xs′′x and s′′xs′x = s̃c
p, then, by construction of Gmodx

c
, ∄ωS , ω′

S ∈ L(GS) such

that P{ΣS ,Σi}(ωS) = ωx, P{ΣS ,Σi}(ω
′
S) = ω′

x, and P{ΣS ,Σoi
}(ωS) is arbitrarily long.

Hence, by Lemma 3 and Remark 3, the indeterminate cycle associated with SEQx

is “Not Reachable” and we return to MDA. If ∃p ∈ {1, . . . , P} such that s̃x = s̃c
p

or if ∃s′x, s′′x, and p ∈ {1, . . . , P} such that s̃x = s′xs′′x and s′′xs′x = s̃c
p, then we

cannot conclude on the reachability of the indeterminate cycle and go to Step D.

Correctness of Step E of the Reachability Function: Consider any two

arbitrarily long traces ωx, ω′
x ∈ L(Gi) as defined above in the proof of correctness

of Step C. Consider Gmodx
c−1

, which is composed of projections of subsystems Gz,

where z ∈ S and S = Bx
c−1. Since there exist in Gmodx

c−1
one or more cycles of

states labeled Mx that correspond to a projection of SEQx, then, by construction

of Gmodx
c−1

, ∃ωS , ω′
S ∈ L(GS) that violate the modular diagnosability of L(GS) w.r.t.

(Σoz : z ∈ S) and fm, and moreover satisfy the following conditions: (i) fm ∈ ωS

where fm is the fault associated with SEQx; (ii) fm /∈ ω′
S ; (iii) P{ΣS ,Σi}(ωS) = ωx;

(iv) P{ΣS ,Σi}(ω
′
S) = ω′

x; (v) P{ΣS ,Σoi
}(ωS) = P{ΣS ,Σoi

}(ω
′
S) = sSEQxs1, SEQx =

s1s2, x ∈ {1, ..., Xi}; and (vi) P{ΣS ,Σoi
}(ωS) is arbitrarily long. Therefore hypothesis

(i) of Lemma 4 is satisfied. The condition Sc = ∅ implies that there does not exist

any subsystem Gl, l /∈ S, that contains common events with the machine G̃c−1;

thus hypothesis (ii) of Lemma 4 is satisfied. Then, by Lemma 4 and Remark 4,

19

we declare the indeterminate cycle associated with SEQx “Reachable” in GS and

GT and return to MDA. If Sc 6= ∅ then we cannot decide on the reachability of the

indeterminate cycle (cf. Lemma 5) and go to Step B.

We have proven that the Reachability Function returns the correct answer to the

question: “Is the indeterminate cycle associated with SEQx reachable in the global

system behavior L(GT)?”. We use this to complete the proof of the correctness of

MDA.

Correctness of Step 1 of MDA: The correctness of Step 1 follows directly

from Corollary 1.

Correctness of Step 2-d of MDA: If, in the Reachability Function, we declare

the indeterminate cycle associated with SEQx “Reachable” then we conclude that,

by Lemma 4, L(GT) is not modularly diagnosable w.r.t. (Σoz : z ∈ T) and Σfi
,

which also implies that L(GT) is not modularly diagnosable w.r.t. (Σoz : z ∈ T)

and (Σfz
: z ∈ T).

Correctness of Step 3 of MDA: If, in the Reachability Function, we declare

the indeterminate cycles associated with SEQx, x = 1, . . . , Xi, “Not Reachable”

then, by Corollary 2, we conclude that L(GT) is modularly diagnosable w.r.t. (Σoz :

z ∈ T) and Σfi
. If the above is true for all i ∈ ND then, by Lemma 1, L(GT) is

modularly diagnosable w.r.t. (Σoz : z ∈ T) and (Σfz
: z ∈ T).

5.3 Discussion

To give more insight into MDA, we present its flowchart, cf. Fig. 3, and discuss the

key steps of its operation. The procedure starts by building local diagnosers for each

module of the system and checking if they are monolithically diagnosable or not.

Clearly, if each individual module is (monolithically/modularly) diagnosable, then

the complete system is both monolithically and modularly diagnosable. Therefore,

we need only focus on the modules that are not diagnosable in order to find out if

a corresponding violation of modular diagnosability occurs or not when the given

module is coupled with the rest of the system.

To do so, we concentrate on the traces that form indeterminate cycles in local

diagnosers. We need to test these traces one by one and determine if they sur-

vive in the diagnoser of the complete system, without constructing this monolithic

diagnoser.

20

Figure 3: Algorithm Flowchart

The testing procedure starts by selecting one indeterminate cycle in a given (non-

diagnosable) local diagnoser and isolating all the so-called “troublesome traces”,

namely, the traces that lead to and form indeterminate cycles in local diagnosers;

there could be more than one troublesome trace depending on the accessibility of

the indeterminate cycle in the transition structure of the local diagnoser. For each

troublesome trace, we select all other modules that contain an event common with

the ones in the troublesome trace, build machines (observers for common events - cf.

Step 2-b of Algorithm 1) for each module selected, perform the parallel composition

of these machines, and finally check if the indeterminate cycle under consideration

survives (cf. Step B of Algorithm 3). If it does not survive at this stage then it

will not survive if we were to construct the monolithic diagnoser. However, if it

does survive, then we need to consider the effect of other modules, namely those

that have common events with the result of the above parallel composition. This

is the heart of the incremental procedure performed in Algorithm 3. We iterate

using essentially the same steps as described above - cf. the loop formed by Steps

B through E of Algorithm 3.

The incremental procedure in Algorithm 3 ceases to add local modules and

consequently stops when either (i) it has been determined that the indeterminate

cycle under consideration is not reachable in the complete system - if this holds

for all indeterminate cycles then the monolithic system is modularly diagnosable or

21

(ii) no other module is added in the incremental process at Step E of Algorithm

3 - in which case the monolithic system is not modularly diagnosable. Note that

the latter conclusion can be reached without having to consider all modules in the

set T . This potential computational gain depends on the structure of the machine

Gmodx
c

and its co-accessibility properties with respect to the indeterminate cycle

under consideration, as determined in Steps C and D of Algorithm 3.

Figure 4 describes the architecture of the modular diagnosability decision process

with respect to Module 1. The process has to be repeated for all modules in the

system in order to infer on the modular diagnosability of the monolithic system.

Observations

Incremental

Local
Observations

Local
Observations

Local

. . . Module IModule 2Module 1

Diagnostics
Local

System Model

Troublesome
Trace Isolation

Potential Integration of other Modules
(Only if required to draw conclusion)

Modular Diagnosability Decision Module
(w.r.t. Faults in Module 1)

. . .

Approach

Figure 4: Modular Diagnosability Verification

The main feature exploited within MDA is the incremental addition of modules

by considering only those that are necessary to reach a decision on the modular

diagnosability of the monolithic system. Depending on the structure of the system,

MDA may consider a smaller number of modules rather than all of T when per-

forming parallel composition operations. Nevertheless, the worst case can possibly

occur and yield

|Bx
c | = |T |, (19)

which implies that every system module is considered in the parallel composition

22

for obtaining Gmodx
c
. However, it should be emphasized that the parallel compo-

sitions performed in MDA involve only machines with common events (observers)

built from the individual modules. Therefore the resulting automata are likely to

have a smaller state spaces than corresponding ones built using entire system mod-

ules. It should also be emphasized that in MDA, we construct diagnosers only

for the individual Gi modules. The process of building diagnosers may result in

a large state space growth in the worst case, since subsets of states of the model

under consideration must be accounted for. Therefore, it is clearly advantageous to

build diagnosers for local subsystems as opposed to building the diagnoser of the

monolithic system GT . The same advantage holds for online diagnosis, cf. Section

5.4. Practical experience with models of modular discrete event systems will be

key to gaining insight into the potential computational advantages of MDA over a

monolithic approach. This is the object of current research.

Finally, the whole procedure followed in MDA not only exploits the modular

structure of the given system, but also may provide insight into causes of non

diagnosability and possible remedies for it through coupling of system modules

with one another. Thus MDA could be a useful tool in modular system design.

5.4 Online Diagnosis

If the system GT , T = {1, . . . , I}, is modularly diagnosable, we can perform online

diagnosis by simply running the local diagnosers Gdi
, i ∈ T , at each local site, cf.

Fig. 5. We know from the property of modular diagnosability that even if the local

diagnoser Gdi
contains an indeterminate cycle, the local observations at site i will

never stay forever in this cycle when the complete system GT is functioning.

If MDA outputs that the system is not modularly diagnosable, then we can

still partially diagnose the system online as follows. Each indeterminate cycle is

associated to a fault fm ∈ ΣfT
, m ∈ {1, . . . , M}. From MDA, we know which inde-

terminate cycles of Gdi
are reachable and which are blocked. If the local diagnoser

Gdi
contains an indeterminate cycle that is “reachable” in the complete system GT ,

then local observations will stay forever in this cycle. Therefore we mark as “fm

inactive” the states of Gdi
that correspond to the reachable indeterminate cycle

associated to the fault fm. We run at each local site the modified version of the

local diagnoser Gdi
, i.e., the one with the labels “fm inactive”. Then, when a local

diagnoser reaches an “fm inactive” state, the local site broadcasts that there is a

23

Failure Recovery Module

Local
Observations

Local
Observations

Local

. . . Module I

Diagnostics
Local

Module 2

Diagnostics
Local

. . .

. . .

Module 1

Diagnostics
Local

System Model

Fault Information

Observations

Figure 5: Online Modular Diagnosis

potential fault fm that cannot be diagnosed with certainty.

6 Conclusion

We have proposed a notion of modular diagnosability that is suitable for systems

that have modular structure expressed in terms of the parallel composition of in-

dividual automata, where each individual automaton models the behavior of the

system component at the corresponding site. If modular diagnosability holds, then

on-line fault diagnosis of the modular system is straightforward as it suffices to run

a local diagnoser at each site, where the local diagnoser is built using only the local

automaton model and ignoring the remainder of the system model. It is guaranteed

that, after sufficient local observable events, any fault at a site will be diagnosed.

However, the verification of modular diagnosability requires in general the joint con-

sideration of multiple system components. We have presented an algorithm that

correctly verifies if modular diagnosability holds or not and does so by incremen-

tally including the automata models of other system components only if they are

required to draw definitive conclusions about the diagnosability of faults within a

given system component. This property of the algorithm makes it potentially com-

putationally advantageous for large complex modular systems. Moreover, even if

the modular diagnosability property of the algorithm does not hold, the algorithm

provides insight into possible structural changes to the system in order to render it

modularly diagnosable.

24

Acknowledgments

This research is supported in part by NSF grants ECS-0080406, CCR-0082784, and

CCR-0325571, and by a grant from the Xerox University Affairs Committee.

References

Cassandras, C. G. and S. Lafortune (1999). Introduction to Discrete Event Systems.

Kluwer Academic Publishers.

Contant, O., S. Lafortune and D. Teneketzis (2002). Failure diagnosis of discrete

event systems: The case of intermittent faults. In: Proc. 41st IEEE Conf. on

Decision and Control. Las Vegas, NV, USA. pp. 4006–4011.

Coolen, R. and H. Luiijf (2002). Intrusion detection: Generics and state-of-the-

art. Technical Report RTO-TR-049. Research and Technology Organisation,

NATO. Neuilly-sur-Seine, France.

Debouk, R., R. Malik and B. Brandin (2002). A modular architecture for diagnosis

of discrete event systems. In: Proc. 41st IEEE Conf. on Decision and Control.

Las Vegas, NV, USA. pp. 417–422.

Debouk, R., S. Lafortune and D. Teneketzis (2000). Coordinated decentralized pro-

tocols for failure diagnosis of discrete event systems. Discrete Event Dynamic

Systems: Theory and Applications 10(1-2), 33–86.

Fabre, E., A. Benveniste and C. Jard (2002). Distributed diagnosis for large dis-

crete event dynamic systems. In: Proc. 15th IFAC World Congress. Barcelona,

Spain.

Garćıa, E., F. Morant, R. Blasco-Gimnez, A. Correcher and E. Quiles (2002).

Centralized modular diagnosis and the phenomenon of coupling. In: Proc.

of the 2002 International Workshop on Discrete Event Systems - WODES’02.

Zaragoza, Spain. pp. 161–168.

Genc, S. and S. Lafortune (2003). Distributed diagnosis of discrete-event systems

using Petri nets. In: Proc. 2003 International Conf. on Application and Theory

of Petri Nets. Eindhoven, The Netherlands. pp. 316–336.

25

Holloway, L. E. and S. Chand (1994). Time templates for discrete event fault moni-

toring in manufacturing systems. In: Proc. 1994 American Control Conference.

Baltimore, MD, USA. pp. 701–706.

Lafortune, S., D. Teneketzis, M. Sampath, R. Sengupta and K. Sinnamohideen

(2001). Failure diagnosis of dynamic systems: An approach based on discrete

event systems. In: Proc. 2001 American Control Conference. Arlington, VA,

USA. pp. 2058–2071.

Ricker, L. S. and E. Fabre (2000). On the construction of modular observers and

diagnosers for discrete event systems. In: Proc. 39th IEEE Conf. on Decision

and Control. Sydney, Australia. pp. 2240–2244.

Sampath, M., R. Sengupta, K. Sinnamohideen S. Lafortune and D. Teneketzis

(1995). Diagnosability of discrete event systems. IEEE Trans. Automatic Con-

trol 40(9), 1555–1575.

Sampath, M., R. Sengupta, K. Sinnamohideen S. Lafortune and D. Teneketzis

(1996). Failure diagnosis using discrete event models. IEEE Trans. Control

Systems Technology 4(2), 105–124.

Su, R., W. M. Wonham, J. Kurien and X. Koutsoukos (2002). Distributed diagno-

sis for qualitative systems. In: Proc. of the 2002 International Workshop on

Discrete Event Systems - WODES’02. Zaragoza, Spain. pp. 169–174.

Yoo, T.-S. (2003). Private Communication.

26

